- 博客(76)
- 收藏
- 关注
原创 【Mquant】7:构建价差套利(三) ——空间误差校正模型
用学术的话讲:协整性分析是一种用于检验非平稳时间序列之间是否存在稳定关系的方法。它可以帮助我们确定变量之间的长期均衡关系,以及是否存在伪回归的情况。通俗来说:还是以上面比特币的价差图来看,我们期望的价差是时间区域1,整体走势非常平稳,没什么太大振幅,并且不希望出现这种异常数据点,像时间区域2这种上升趋势很明显走势没有一点回归的就被认为是非平稳序列。那有没有一种方式可以将这个走势通过一个数学模型来拟合成类似时间区域1的走势图呢?答案是:可能有!
2023-11-16 15:00:53 464
原创 【Mquant】9:python批量铭刻erc-20铭文
ETHS铭文是以太坊铭文协议Ethscriptions的代币名称。Ethscriptions是一个基于以太坊的铭文协议,允许用户在以太坊主网上刻入不同类型的文件,并将其记录到区块中。ETHS作为Ethscriptions的第一个"概念币",引起了人们的关注和热议。需要注意的是,ETHS铭文的共识承认只限于编号在21000以内的铭文,而且对于重复被打的编号,只有最先被打的那张ETHS铭文会被承认。有问题欢迎私聊,可+量化交易~裙,领取量化交易资料。
2023-11-10 09:57:52 2205 1
原创 【Mquant】6:构建价差套利(二)
很显然,我们上面的程序并不能直接上实盘交易,但如果我们手续费非常低的情况下如万分之一,或者遇到极端行情,某些币种现货和期货之间的价差非常大,比如前段时间的luna,还有这段时间的mask,只要我们设置好程序,仍然可以在极端行情下赚取到稳定的资金,这也是我们学习量化交易的原因,只有长久稳定的赚钱,才能在市场立于不败之地。从目前回测曲线上来看,这个策略表现还不错,但是没有计算手续费和滑点,为了更精准的回测出我们构建的策略表现到底如何,下面采用veighna自带的价差交易回测引擎来进行回测。
2023-11-07 14:09:38 553
原创 【Mquant】2:量化平台的选择
开源量化平台:Veighna是一个开源的量化平台,这意味着它的代码是公开的,任何人都可以查看和修改。不同的平台可能有不同的特点和优势,可以根据自己的需求选择适合的平台。:对于一些敏感的策略和交易数据,安全性和保密性是非常重要的。Bigquant:基于云端的量化平台,提供数据分析、策略回测等功能,适用于中小散A股的个人量化投资。掘金:老牌的量化投资工具集平台,提供丰富的功能和工具集,适用于中低频类型的A股市场投研策略。优矿:基于云端的量化平台,提供数据分析、策略回测等功能,适用于中小散A股的个人量化投资。
2023-11-01 15:03:07 596
原创 【从0开始配置前后端项目】——Docker环境配置
镜像:CentOS 7.9 64位CPU & 内存:2核2G系统盘:60GB峰值带宽:30Mbps流量包:600GB / 600GB。
2023-10-05 15:48:07 488
原创 【机器学习】第二章:K近邻(分类)
• 理论成熟,思想简单,既可以用来做分类也可以用来做回归;• 可用于非线性分类;• 和朴素贝叶斯之类的算法比,对数据没有假设,准确度高,对异常点不敏感;• 由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合;• 该算法比较适用于样本容量比较大的类域的自动分类,而那些样本容量较小的类域采用这种算法比较容易产生误分。
2023-06-05 09:28:36 574
原创 【Vue3】js-cookie包
js-cookie 是一个上手简单,轻量的,处理cookies的库在所有浏览器是可用允许所有的字符集支持 ES6 模块化, AMD 和 CommonJs 模块化符合 RFC 6265有wiki允许自定义编码、解码小体积,小于 800 bytes。
2023-04-12 22:19:59 1389 1
原创 【大数据分析与挖掘】挖掘建模之关联分析
以超市销售数据为例,提取关联规则的最大困难在于当存在很多商品时,可能的商品的组合(规则的前项与后项)的数目会达到一种令人望而却步的程度。因而各种关联规则分析的算法从不同方面入手减小可能的搜索空间的大小以及减小扫描数据的次数。Apriori算法是最经典的挖掘频繁项集的算法,第一次实现了在大数据集上可行的关联规则提取,其核心思想是通过连接产生候选项与其支持度然后通过剪枝生成频繁项集。
2023-04-06 09:35:49 2389 1
原创 【Django】基于JWT的token认证
很多对外开放的API需要识别请求者的身份,并据此判断所请求的资源是否可以返回给请求者。token就是一种用于身份验证的机制,基于这种机制,应用不需要在服务端保留用户的认证信息或者会话信息,可实现无状态、分布式的Web应用授权,为应用的扩展提供了便利。Json Web Toke(JWT),是为了在网络应用环境间传递声明而执行的一种基于JSON的开放标准RFC7519。
2023-03-28 09:07:26 1912 2
转载 【Django】restframework框架介绍快速入门——参考官方文档
我们将创建一个简单的 API,以允许管理员用户查看和编辑系统中的用户和组。官网原文:https://www.django-rest-framework.org/tutorial/quickstart/文章目录一、项目设置二、项目布局应如下所示:三、序列化程序四、视图五、网址六、分页七、设置八、测试我们的接口一、项目设置创建一个名为 的新 Django 项目,然后启动一个名为 的新应用程序。tutorial quickstart# Create the project directorymkd
2023-03-27 22:34:44 608
原创 【数据分析与挖掘】数据预处理
数据挖掘过程中,数据预处理占整个过程的60%,主要分为以下四个步骤:数据清洗的主要目的是为了删除原始数据集中的无关数据、重复数据、平滑噪声数据、处理缺失值、异常值等。处理缺失值的方法可分为三类:删除数据、数据插补和不处理,常见的数据插补方法见下表:插值法有:Hermite插值、分段插值、样条插值法,而最主要的有拉格朗日插值法和牛顿插值法。1.1.2 牛顿插值法1.2 异常值处理在数据预处理时,异常值是否提出,需要根据具体情况,有些异常值可能蕴含某些信息。数据挖掘需要的数据往往分布在不同的数据
2023-03-26 22:29:36 2110 1
原创 【spark】第三章——SparkSQL
SparkSQL 的前身是 Shark,给熟悉 RDBMS 但又不理解 MapReduce 的技术人员提供快速上手的工具。Hive 是早期唯一运行在 Hadoop 上的 SQL-on-Hadoop 工具。但是 MapReduce 计算过程中大量的中间磁盘落地过程消耗了大量的 I/O,降低的运行效率,为了提高 SQL-on-Hadoop的效率,大量的 SQL-on-Hadoop 工具开始产生,其中表现较为突出的是:◾ Drill◾ Impala◾ Shark。
2023-02-13 21:32:53 699
原创 【Latex】1.Latex环境的安装与配置
LaTeX(LATEX,音译“拉泰赫”)是一种基于ΤΕΧ的排版系统,由美国计算机学家莱斯利·兰伯特(Leslie Lamport)在20世纪80年代初期开发,利用这种格式,即使使用者没有排版和程序设计的知识也可以充分发挥由TeX所提供的强大功能,能在几天、甚至几小时内生成很多具有书籍质量的印刷品。对于生成复杂表格和数学公式,这一点表现得尤为突出。因此它非常适用于生成高印刷质量的科技和数学类文档。这个系统同样适用于生成从简单的信件到完整书籍的所有其他种类的文档。
2023-01-05 14:18:05 668
原创 【数据可视化】第五章—— 基于PyEcharts的数据可视化
pyecharts是一个用于生成 Echarts 图表的类库,是一款将Python与Echarts相结合的强大的数据可视化工具,使用pyecharts可以让开发者轻松的实现大数据的可视化。官网 https://pyecharts.org/#/zh-cn/introPyecharts是一个用于生成Echarts图表的库。代码相对简洁,可以生成Echarts风格的图表。◾丰富的可视化类型。
2022-12-08 15:56:25 9442 3
原创 【spark】小试牛刀sparksql和rdd
1、在spark shell中完成3个pdf文件中相应RDD基本操作2、Patient3.csv中包含病历数据,字段分别为:pid, 身高,体重,腰围,舒张压,收缩压。请RDD操作分别统计以下值:
2022-12-05 18:41:41 589
原创 【spark】第二章——SparkCore之运行架构及核心编程
Spark 框架的核心是一个计算引擎,整体来说,它采用了标准 master-slave 的结构。如下图所示,它展示了一个 Spark 执行时的基本结构。图形中的 Driver 表示 master,负责管理整个集群中的作业任务调度。图形中的 Executor 则是 slave,负责实际执行任务。由上图可以看出,对于 Spark 框架有两个核心组件:Spark 驱动器节点,用于执行 Spark 任务中的 main 方法,负责实际代码的执行工作。Driver 在 Spark 作业执行时主要负责:➢ 将用户程
2022-12-03 20:39:17 562
原创 【spark】第一章——Spark简介及环境配置
Spark 是一种基于内存的快速、通用、可扩展的大数据分析计算引擎。在之前的学习中,Hadoop 的 MapReduce 是大家广为熟知的计算框架,那为什么咱们还要学习新的计算框架 Spark 呢,这里就不得不提到 Spark 和 Hadoop 的关系。首先从时间节点上来看:Hadoop:◼️2006 年 1 月,Doug Cutting 加入 Yahoo,领导 Hadoop 的开发◼️ 2008 年 1 月,Hadoop 成为 Apache 顶级项目◼️ 2011 年 1.0 正式发布◼️ 20
2022-12-03 11:43:17 949
原创 【Hbase】第二章——安装部署( 快速入门)
百度网盘资料如下:链接:https://pan.baidu.com/s/1Q_OH6w1ynqrd07jfqyBDQA?pwd=y69u提取码:y69u。
2022-12-02 16:06:05 572
原创 【Hbase】第一章——从原理剖析
一个-ROOT-表最多只能有一个Region,也就是最多只能有128MB,按照每行(一个映射条目)占用1KB内存计算,128MB空间可以容纳128MB/1KB=217行,也就是说,一个-ROOT-表可以寻址217个.META.表的Region。举个例子:如果最近写入HBase表中的数据是最可能被访问的,可以考虑将时间戳作为行键的一部分,由于是字典序排序,所以可以使用Long.MAX_VALUE - timestamp作为行键,这样能保证新写入的数据在读取时可以被快速命中。
2022-12-02 14:59:38 990
原创 【数据可视化】第四章—— 基于pandas的数据可视化(pandas基本操作)
图形绘制的代码:链接:https://pan.baidu.com/s/1pgS60sry6XDILIhth8bAvA?pwd=abcd提取码:abcd。
2022-12-02 14:52:42 541
原创 【数据可视化】第四章—— 基于pandas的数据可视化(pandas数据结构)
❓为什么要学习pandas❓NumPy已经能够帮助我们处理数据,能够结合matplotlib解决我们数据分析的问题,那么pandas学习的目的在什么地方呢?NumPy能够帮我们处理处理数值型数据,但是这还不够,很多时候,我们的数据除了数值之外,还有字符串,还有时间序列等,所以,NumPy能够帮助我们处理数值,但是pandas除了处理数值之外(基于NumPy),还能够帮助我们处理其他类型的数据。
2022-12-02 11:15:48 1071
原创 【Hadoop】第三章——Hadoop运行模式(集群分发脚本,SSH免密登录)
1)Hadoop官方网站:http://hadoop.apache.org/2)Hadoop运行模式包括:本地模式、伪分布式模式以及完全分布式模式。本地模式:单机运行,只是用来演示一下官方案例。生产环境不用。伪分布式模式:也是单机运行,但是具备Hadoop集群的所有功能,一台服务器模拟一个分布式的环境。个别缺钱的公司用来测试,生产环境不用。完全分布式模式:多台服务器组成分布式环境。生产环境使用。1)各个模块分开启动/停止(配置ssh是前提)常用(1)整体启动/停止HDFS。
2022-12-01 23:33:39 254
原创 【Hadoop】第二章——Hadoop运行环境搭建(开发重点)
此文章资料请下载百度网盘:链接:https://pan.baidu.com/s/15q-gV6bNHmKDkCeskdQ-nQ?pwd=r473 提取码:r473。
2022-12-01 17:15:14 267
原创 【Hadoop】第一章—— Hadoop概述
Hadoop三大发行版本:Apache、Cloudera、Hortonworks。◾Apache版本最原始(最基础)的版本,对于入门学习最好。2006◾Cloudera内部集成了很多大数据框架,对应产品CDH。2008◾Hortonworks文档较好,对应产品HDP。2011◾Hortonworks现在已经被Cloudera公司收购,推出新的品牌CDP。官网地址:http://hadoop.apache.org。
2022-12-01 15:52:52 130
原创 【scala】第七章—— 集合
1)Scala 的集合有三大类:序列 Seq、集 Set、映射 Map,所有的集合都扩展自 Iterable特质。2)对于几乎所有的集合类,Scala 都同时提供了可变和不可变的版本,分别位于以下两个包不可变集合:scala.collection.immutable可变集合: scala.collection.mutable3)Scala 不可变集合,就是指该集合对象不可修改,每次修改就会返回一个新对象,而不会对原对象进行修改。类似于 java 中的 String 对象。
2022-11-26 19:11:12 156
原创 【scala】第六章—— 面向对象
1)回顾:Java 中的类如果类是 public 的,则必须和文件名一致。一般,一个.java 有一个 public 类注意:Scala 中没有 public,一个.scala 中可以写多个类。1)基本语法[ 修饰符 ] class 类名 {类体 }说明(1)Scala 语法中,类并不声明为 public,所有这些类都具有公有可见性(即默认就是public)(2)一个 Scala 源文件可以包含多个类2)案例实操。
2022-11-26 17:14:01 98
原创 【数据可视化】第三章——数据可视化综合实践
作业:根据Matplotlib作业数据.csv做出4种不同类型的组合图像要求:根据情况适当添加信息,如:标题,坐标轴信息,图例信息,特殊值标注等。可参考制作内容包括并不限于:评分最高的20部电影的投票人数分布(柱状图,条形图)不同国家2012-2016年发行电影数量(折线图,簇状柱形图)不同类型电影2012-2016年发行数量(簇状柱形图)不同类型电影所占比值(饼图)电影时长分布分析(直方图)电影时长,豆瓣评分与投票人数的相关关系(气泡图)
2022-11-25 17:35:29 1696
原创 【scala】第五章—— 函数式编程
1)面向对象编程解决问题,分解对象,行为,属性,然后通过对象的关系以及行为的调用来解决问题。对象:用户行为:登录、连接 JDBC、读取数据库属性:用户名、密码Scala 语言是一个完全面向对象编程语言。万物皆对象对象的本质:对数据和行为的一个封装2)函数式编程解决问题时,将问题分解成一个一个的步骤,将每个步骤进行封装(函数),通过调用这些封装好的步骤,解决问题。例如:请求->用户名、密码->连接 JDBC->读取数据库Scala 语言是一个完全函数式编程语言。万物皆函数。
2022-11-23 22:10:38 123
原创 【scala】第四章——流程控制
(1)需求 1:需求:输入年龄,如果年龄小于 18 岁,则输出“童年”。如果年龄大于等于 18 且小于等于 30,则输出“中年”,否则,输出“老年”。Scala 也为 for 循环这一常见的控制结构提供了非常多的特性,这些 for 循环的特性被称为 for 推导式或 for 表达式。的使用变量,而变量需要声明在 while 循环的外部,那么就等同于循环的内部对外部的变量造成了影响,所以不推荐使用,而是。其中,for,while,do…需求:输入人的年龄,如果该同志的年龄小于 18 岁,则输出“童年”
2022-11-22 17:12:07 313
原创 【scala】第二章——Scala 变量和数据类型
🟠Java引用类型:(对象类型), 由于Java有基本类型,而且基本类型不是真正意义的对象,即使后面产生了基本类型的包装类,但是仍然存在基本数据类型,所以Java语言并不是真正意思的面向对象。(3)Nothing,可以作为没有正常返回值的方法的返回类型,非常直观的告诉你这个方法不会正常返回,而且由于 Nothing 是其他任意类型的子类,他还能跟要求返回值的方法兼容。7)Nothing,是所有数据类型的子类,主要用在一个函数没有明确返回值时使用,因为这样我们可以把抛出的返回值,返回给任何的变量或者函数。
2022-11-22 16:12:20 493
原创 【scala】第一章——Scala 入门
1)Spark—新一代内存级大数据计算框架,是大数据的重要内容。2)Spark就是使用Scala编写的。因此为了更好的学习Spark, 需要掌握Scala这门语言。3)Spark的兴起,带动Scala语言的发展!
2022-11-22 12:20:51 270
原创 【数据可视化】第二章——基于matplotlib的数据可视化
Matplotlib: 最流行的Python底层绘图库,,名字取材于MATLAB,模仿MATLAB构建Matplotlib库的效果 http://matplotlib.org/gallery.html为什么要学习matplotlib?1.能将数据进行可视化,更直观的呈现2.使数据更加客观、更具说服力1️⃣ Matplotlib库由各种可视化类构成,内部结构复杂,受Matlab启发。2️⃣matplotlib.pyplot是绘制各类可视化图形的命令子库,相当于快捷方式。3️⃣pyplot中的每一
2022-11-22 10:26:37 598
原创 【数据可视化】第一章——了解NumPy库的基本原理
使用Python中的扩展库,可以较为轻松的实现数据可视化。一般来讲,Python可视化的实现以numpy库和matplotlib库为基础,除此以外,还有一些其他的可视化库,如pandas库、seaborn库、Bokeh库以及pyqtgraph库等。1️⃣NumPy是一个开源的Python科学计算基础库,主要用于数据分析,在进行数据可视化时,常常需要使用到NumPy库中的计算功能。NumPy库中最核心的部分是ndarray对象。它封装了同构数据类型的n维数组,它的功能将通过演示代码的形式呈现。
2022-11-22 09:49:19 862
原创 【Linux操作系统】crontab设置自动运行脚本
最近要在linux机器上做量化策略,目前需要每天爬取一些数据,于是就写了一个python的策略放到机器上定时去运行,这篇文章就详细介绍如何配置。我们经常使用的是crontab命令是cron table的简写,它是cron的配置文件,也可以叫它作业列表,我们可以在以下文件夹内找到相关配置文件。
2022-11-16 11:54:57 2161
原创 【VeighNa】开始量化交易——第四章:结合AHR999指标和情绪指标分析
ahr999指数由著名屯币党微博用户ahr999(九神)创建,计算方式:ahr999指标 =(比特币价格/200日定投成本)*(比特币价格/指数增长估值)。其中指数成长估值为币价和币龄的拟合结果,本指数拟合方法为每月对历史数据进行拟合。该指数辅助比特币定投用户结合择机策略做出投资决策。该指数隐含了比特币短期定投的收益率及比特币价格与预期估值的偏离度。从长期来看,比特币价格与区块高度呈现出一定的正相关,同时借助定投方式的优势,短期定投成本大都位于比特币价格之下。
2022-11-08 19:53:55 2240 1
原创 【Mquant】5:构建价差套利(一)
在数字货币交易市场,我们会发现大多数行情下,相同币种之间的不同交割合约会存在一定的价差,由于它们属于同一品种,本身价值不会有任何差别,而且涨跌趋势一致,相关性高。那么如果在它们价差低的时候买入,价差高的时候卖出,这样我们就可以赚取中间的这部分差价。不过在实际交易过程中,我们还需要考虑到交易滑点、手续费、极端行情下,价差走出趋势特征…
2022-11-05 11:15:50 2735
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人