在Pycharm中新建虚拟环境的方法并使用

一、什么是虚拟环境

虚拟环境就是在本地创建一个独立的Python环境,这个环境拥有自己的独立的Python解释器和包管理器,不与系统环境和其他虚拟环境产生干扰。可以很好地避免Python版本和第三方库的冲突,实现项目

二、本教程的环境

已安装:

Pycharm 2019.3

anaconda3

python 3.8

但本教程也适用其他版本。一样的操作。

三、新建一个新项目

  选择新虚拟环境使用什么工具创建

      1.1使用virtualenv创建

 virtualenv 创建的虚拟环境相对较轻量,独立于具体包管理工具(例如pip)

 

项目路径可以自己修改,最后一个目录项目名称,虚拟环境文件夹会项目下在venvs文件夹中

基础解释器:可以选择本地anaconda里的或者本地python里的python.exe。

下面那两个选项:第一个功能是:是否继承 Python 全局环境中的第三方库(site - packages)

        当这个选项被选中时,新项目可以访问和使用在全局 Python 环境中已经安装的第三方库。例如,如果在系统的全局 Python 环境中安装了numpy库,并且在新建项目时勾选了 “inherit global site - packages”,那么在这个新项目中就可以直接导入numpy并使用。

        不勾选这个选项,新项目将拥有一个相对独立的环境。这意味着它不会自动获取全局环境中的第三方库。这样做的好处是项目的环境更加隔离和纯净。假设全局环境中有一个旧版本的pandas库,而你想在新项目中使用一个不同版本(可能是更新的版本)的pandas。如果不继承全局的 site - packages,你可以在项目的虚拟环境(如果使用虚拟环境的话)中安装指定版本的pandas,而不会受到全局环境中旧版本的干扰。

第二个选项是:其他项目能不能使用这个项目的虚拟环境。勾中就是可以。一般不勾选。

               我这里基础环境选的python下的,

1.2查看包

进入setting设置中,可以看到只有两个基础的包,很纯净。后面项目需要什么包下载都会在这个文件夹中。

PyCharm支持可以直接安装包,你需要什么版本的包直接搜索,然后安装就行。

 

点击设置,可以看到我们的项目解释器已经有了这个虚拟环境。也可以换别的环境,里面有需要的包,就不用下载了,也能导包成功。但这不纯净了。

1.3查看python版本 

和我安装的python版本一致

2.1使用conda创建

和命令行创建的方式一样,可以选择python版本

 

使用conda创建的虚拟环境的目录,不在项目底下而是在anaconda安装目录下的envs目录下。

2.2查看python版本

 

和选的版本一致。

3.1使用pipenv创建

一般不选择这个创建

 需要找到pip.exe

直接选用现有的环境

 这个没什么好说的,直接用就行了。

 四、创建方式有什么区别

venv

是 Python 标准库自带的模块,适用于创建轻量级的虚拟环境。

主要侧重于 Python 环境的隔离。

依赖于 Python 的包管理工具pip来安装软件包。

没有像 Conda 那样集中式的环境配置文件来记录整个环境的所有软件包信息。它主要依赖于piprequirements.txt文件来记录 Python 软件包的依赖关系,例如,在一个 venv 环境中安装了多个软件包后,可以使用pip freeze > requirements.txt命令将软件包及其版本信息输出到requirements.txt文件中,在其他环境中可以通过pip install -r requirements.txt来安装相同的软件包。

conda

Anaconda 是一个开源的 Python 发行版,除了包含 Python 解释器外,还预装了许多用于数据科学、机器学习等领域的常用软件包。

可以管理 Python 包外,还可以管理其他语言编写的软件包,如 R、C++ 等。它使用conda install命令来安装软件包。而且,Conda 在安装软件包时会自动处理软件包的依赖关系,不仅包括 Python 软件包的依赖,还包括其他软件包的依赖。例如,当安装pandas时,Conda 会自动安装pandas所依赖的numpy等其他软件包。

有一个完整的环境配置文件(通常是environment.yml),这个文件可以记录环境中所有软件包(包括不同语言的软件包)的名称、版本和安装渠道等详细信息。这使得环境的复用和共享更加方便。例如,可以将一个包含了 Python、R 和其他软件包的 Conda 环境配置文件分享给其他用户,其他用户可以使用conda env create -f environment.yml命令来创建完全相同的环境。

 

要在PyCharm创建venv虚拟环境,您可以按照以下步骤进行操作: 1. 打开PyCharm导航到"Preferences"(Mac)或"Settings"(Windows)。 2. 在左侧面板中,选择"Python Interpreter"。 3. 在右侧面板的顶部,点击"Add"按钮(加号图标)。 4. 在弹出的窗口中,选择"Virtualenv Environment"。 5. 在"Location"字段中,选择您想要创建虚拟环境的文件夹路径,虚拟环境命名。 6. 在"Base interpreter"字段中,选择您想要使用Python解释器版本。 7. 点击"OK"按钮来创建虚拟环境创建完成后,您将在PyCharmPython Interpreter列表中看到您新创建虚拟环境。您可以在项目中使用虚拟环境来安装和管理项目所需的依赖包。\[2\] 通过创建venv虚拟环境,您可以避免在系统中安装和管理大量的第三方模块,同时可以轻松切换不同的Python解释器版本,以适应不同的项目需求。这样可以提高项目的可维护性和隔离性,避免出现版本冲突和其他常见的问题。\[3\] #### 引用[.reference_title] - *1* [Pycharm创建虚拟环境](https://blog.csdn.net/qq_39208536/article/details/121493112)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [Pythonpycharm虚拟环境 venv简介及实践](https://blog.csdn.net/zhanggqianglovec/article/details/128101195)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值