基于LSTM算法的电影推荐系统的设计与实现

权限管理

本项目是一个基于长短期记忆网络(LSTM)算法的电影推荐系统的设计与实现,目的是提升传统推荐系统在动态用户兴趣建模方面的表现,避免“信息茧房”问题,提升用户体验。该项目使用MovieLens数据集,在PyTorch框架下开发,结合了协同过滤、内容推荐和注意力机制构建混合推荐模型,并通过TensorRT进行模型加速部署。
系统涵盖用户行为建模、数据预处理、推荐算法设计、可视化展示、冷启动处理等核心功能。

一. 🦁 前言

本系统旨在为流媒体平台用户提供个性化电影推荐,解决静态推荐模型无法捕捉用户兴趣动态变化的痛点。核心技术为LSTM与注意力机制,结合内容与行为数据,实现兴趣演变建模。

二. 🦁 开源代码与组件使用情况说明

  • 使用 PyTorch 实现深度学习模型(LSTM、注意力机制等)
  • 使用 TensorRT 实现部署加速
  • 使用 FastAPI 搭建Web服务
  • 使用 Jinja2 实现前端模板渲染
  • 使用 MovieLens 数据集 作为推荐训练数据源

三. 🦁 核心功能

1. LSTM兴趣建模

通过LSTM处理用户观影历史序列,建模其长期与短期兴趣变化;采用单向LSTM结构以匹配用户兴趣的时间演进特点。
在这里插入图片描述

2. 注意力机制

注意力机制是序列模型的关键增强部分,它使模型能够识别并强调历史行为中的重要项目,从而提供更精准的推荐。系统实现了简洁高效的注意力层,通过计算权重分布突出关键信息。

class AttentionLayer(nn.Module):
    """用于突出显示重要序列元素的注意力层"""
    def __init__(self, hidden_dim, attention_dim):
        super(AttentionLayer, self).__init__()
        self.attention = nn.Sequential(
            nn.Linear(hidden_dim, attention_dim),
            nn.Tanh(),
            nn.Linear(attention_dim, 1)
        )
    def forward(self, hidden_states):
        # 计算注意力分数
        attention_scores = self.attention(hidden_states)  # [batch_size, seq_len, 1]
        
        # 应用softmax获取注意力权重
        attention_weights = torch.softmax(attention_scores, dim=1)
        ...

注意力层的实现采用了经典的双层前馈网络结构,中间使用Tanh激活函数,平衡了表达能力与计算复杂度,能够有效捕捉序列内部的重要性分布。
在这里插入图片描述

3. 混合推荐策略

融合协同过滤、基于内容的推荐及LSTM预测结果;为不同用户状态动态分配推荐权重,缓解冷启动问题。

# 融合所有特征 - 确保所有张量都是2D [batch_size, feature_dim]
fusion_features = torch.cat([
    context_vector,  # [batch_size, lstm_hidden_dim]
    user_embeddings,  # [batch_size, embedding_dim]
    movie_embeddings,  # [batch_size, embedding_dim]
    movie_features_transformed,  # [batch_size, embedding_dim]
    user_features_transformed,  # [batch_size, embedding_dim]
    context_features_transformed  # [batch_size, embedding_dim/2]
], dim=1)

4. 数据处理模块

实现数据清洗、评分归一化、时间特征周期性编码、用户行为序列构建、滑动窗口序列生成等。

5. 冷启动处理机制

采用三级处理策略:

  • 无评分用户返回热门电影;
  • 有少量行为则增强内容推荐;
  • 针对新电影使用内容特征表示。
def get_recommendations(self, user_id, n=10, exclude_rated=True):
    """为用户生成电影推荐
    
    Args:
        user_id: 用户ID
        n: 推荐数量
        exclude_rated: 是否排除已评分电影
    Returns:
        recommendations: 推荐列表或错误信息
    """
    try:
        # ...随机种子设置
        # 获取用户历史
        user_history = self.rating_manager.get_user_history(user_id)
        
        # 检查是否有足够的历史记录
        if not user_history:
            return {'error': f"用户 {user_id} 没有足够的评分历史进行推荐,请先评分一些电影"}

对于有限历史的新用户,系统增强了基于内容的推荐权重。通过分析用户已评分电影的类型分布,识别潜在偏好,然后优先推荐符合这些偏好的未评分电影。系统不仅提取了每部已评分电影的类型,还构建了完整的类型统计,识别用户的主导偏好。这种基于内容的引导机制能够快速捕捉新用户的兴趣方向,提供相关且多样的初始推荐。
已评分电影排除是冷启动阶段的重要优化。系统构建已评分电影集合,确保这些电影不再出现在推荐列表中,避免了信息冗余与用户困惑。候选电影分组展示了算法的智能适应性——对于新用户,系统增加了来自preferred_candidates的比例,确保初始推荐更符合已表达偏好;随着用户评分增加,系统逐步增加other_candidates的比例,提升推荐多样性。这种渐进式策略平衡了初期相关性与长期探索性,有效解决了冷启动-稳定推荐的平滑过渡问题。
新电影处理是冷启动问题的另一维度。对于新上线或评分稀少的电影,系统增强了内容特征的影响力,通过类型、年份等元数据判断其与用户偏好的匹配度。这种双向冷启动处理确保了系统在各种数据稀疏场景下的适应能力,为用户和内容提供了进入推荐循环的有效路径。

6. 可视化交互设计

使用FastAPI + Jinja2构建响应式页面,包含用户登录、评分、推荐结果展示、评分反馈、兴趣模型可视化等功能。

四. 🦁 演示效果

系统提供完整的用户流程:用户登录后可浏览推荐电影、进行评分,查看详情页并获得个性化推荐。

1. 用户登录及评分界面

提供直观的评分机制(星级点击)、评分统计与历史记录展示。
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

2. 个性化推荐页面

推荐内容展示为卡片式布局,包含电影标题、类型、海报、评分等,支持分页浏览。
在这里插入图片描述

3. 电影浏览类比

推荐理由以注意力分数形式呈现,解释为什么推荐某部电影。
在这里插入图片描述

五. 🦁 写在最后

本项目在融合传统推荐策略与深度学习模型的基础上,通过LSTM建模时序兴趣、Attention强化关键行为、混合推荐应对冷启动问题,成功构建了一个具备可解释性与实时性的推荐系统。研究成果具备可迁移性,适用于新闻、音乐、商品等多领域推荐系统。

如需获取源码,请联系下方狮子哥微信⬇️。


在这里插入图片描述

🦁 其它优质专栏推荐 🦁

🌟《Java核心系列(修炼内功,无上心法)》: 主要是JDK源码的核心讲解,几乎每篇文章都过万字,让你详细掌握每一个知识点!

🌟 《springBoot 源码剥析核心系列》一些场景的Springboot源码剥析以及常用Springboot相关知识点解读

欢迎加入狮子的社区:『Lion-编程进阶之路』,日常收录优质好文

更多文章可持续关注上方🦁的博客,2023咱们顶峰相见!

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

狮子也疯狂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值