FTTA是一种新的基于足球队的训练方法的优化算法——足球队训练算法Football team training algorithm。该成果于2024年1月在线发表、2024年7月正式发表在著名的中科院1区SCI top 期刊Expert Systems with Applications。
1、简介
根据足球队的训练方法,提出了一种新的元启发式优化算法——足球队训练算法(FTTA),它模拟了训练环节的三个阶段:集体训练、团体训练和个人额外训练。通过对CEC2005和CEC2020两组测试函数的测试,所提出的优化算法(FTTA)取得了最好的结果,远远超过了传统的灰狼优化(GWO)、鲸鱼优化算法(WOA)算法等。
2、数学建模
2.1 集训
训练开始时,队员们在教练员的指导下进行集体训练。将球员分为四种不同类型:跟随者、发现者、思考者和波动者。在每次迭代中,将随机改变自己的类型。
(1)跟随者:
F
i
,
j
k
=
F
i
,
j
k
o
l
d
+
r
a
n
d
×
(
F
b
e
s
t
,
j
k
−
F
i
,
j
k
o
l
d
)
F_{i,j}^{k} = F_{i,j}^{k}old+rand×(F_{best,j}^{k} -F_{i,j}^{k}old)
Fi,jk=Fi,jkold+rand×(Fbest,jk−Fi,jkold)
(2)发现者
F
i
,
j
k
n
e
w
=
F
i
,
j
k
o
l
d
+
r
a
n
d
1
×
(
F
b
e
s
t
,
j
k
−
F
i
,
j
k
o
l
d
)
−
r
a
n
d
2
×
(
F
w
o
r
s
t
,
j
k
−
F
i
,
j
k
o
l
d
)
F_{i,j}^{k}new = F_{i,j}^{k}old+rand_1×(F_{best,j}^{k} -F_{i,j}^{k}old)-rand_2×(F_{worst,j}^{k} -F_{i,j}^{k}old)
Fi,jknew=Fi,jkold+rand1×(Fbest,jk−Fi,jkold)−rand2×(Fworst,jk−Fi,jkold)
(3)思考者
F
i
,
j
k
n
e
w
=
F
i
,
j
k
o
l
d
+
r
a
n
d
×
(
F
b
e
s
t
,
j
k
−
−
F
i
,
j
k
o
l
d
)
F_{i,j}^{k}new = F_{i,j}^{k}old+rand×(F_{best,j}^{k} - -F_{i,j}^{k}old)
Fi,jknew=Fi,jkold+rand×(Fbest,jk−−Fi,jkold)
(4)波动者
F
i
,
j
k
n
e
w
=
F
i
,
j
k
o
l
d
×
(
1
+
t
(
k
)
F_{i,j}^{k}new = F_{i,j}^{k}old×(1+t(k)
Fi,jknew=Fi,jkold×(1+t(k)
2.2 小组训练
集体训练完成后,足球训练过程进入分组训练阶段,教练员根据球员的特点(每个维度都是一个特征值)将球员分为前锋、中场、后卫和守门员四类。
2.3 个人加训
F b e s t k n e w = F b e s t k o l d × ( 1 + ( 1 − 1 / k ) × G a u s s s ) + 1 / k × C a u c h y ) F_{best}^{k}new = F_{best}^{k}old×(1+(1-1/k)×Gausss)+1/k×Cauchy) Fbestknew=Fbestkold×(1+(1−1/k)×Gausss)+1/k×Cauchy)
3.Matlab源代码下载
[(1)2024年新提出的算法|足球队训练算法(FTTA)跑CEC2005数据集]
Zhirui Tian, Mei Gai,Football team training algorithm: A novel sport-inspired meta-heuristic optimization algorithm for global optimization, Expert Systems with Applications, Volume 245, 2024,123088.