2024年新提出的算法|足球队训练算法(FTTA)Football team training algorithm: A novel sport-inspired meta-heuristic

FTTA是一种新的基于足球队的训练方法的优化算法——足球队训练算法Football team training algorithm。该成果于2024年1月在线发表、2024年7月正式发表在著名的中科院1区SCI top 期刊Expert Systems with Applications。
在这里插入图片描述

1、简介

根据足球队的训练方法,提出了一种新的元启发式优化算法——足球队训练算法(FTTA),它模拟了训练环节的三个阶段:集体训练、团体训练和个人额外训练。通过对CEC2005和CEC2020两组测试函数的测试,所提出的优化算法(FTTA)取得了最好的结果,远远超过了传统的灰狼优化(GWO)、鲸鱼优化算法(WOA)算法等。
在这里插入图片描述

2、数学建模

2.1 集训

训练开始时,队员们在教练员的指导下进行集体训练。将球员分为四种不同类型:跟随者、发现者、思考者和波动者。在每次迭代中,将随机改变自己的类型。

(1)跟随者:
F i , j k = F i , j k o l d + r a n d × ( F b e s t , j k − F i , j k o l d ) F_{i,j}^{k} = F_{i,j}^{k}old+rand×(F_{best,j}^{k} -F_{i,j}^{k}old) Fi,jk=Fi,jkold+rand×(Fbest,jkFi,jkold)
(2)发现者
F i , j k n e w = F i , j k o l d + r a n d 1 × ( F b e s t , j k − F i , j k o l d ) − r a n d 2 × ( F w o r s t , j k − F i , j k o l d ) F_{i,j}^{k}new = F_{i,j}^{k}old+rand_1×(F_{best,j}^{k} -F_{i,j}^{k}old)-rand_2×(F_{worst,j}^{k} -F_{i,j}^{k}old) Fi,jknew=Fi,jkold+rand1×(Fbest,jkFi,jkold)rand2×(Fworst,jkFi,jkold)
(3)思考者
F i , j k n e w = F i , j k o l d + r a n d × ( F b e s t , j k − − F i , j k o l d ) F_{i,j}^{k}new = F_{i,j}^{k}old+rand×(F_{best,j}^{k} - -F_{i,j}^{k}old) Fi,jknew=Fi,jkold+rand×(Fbest,jkFi,jkold)
(4)波动者
F i , j k n e w = F i , j k o l d × ( 1 + t ( k ) F_{i,j}^{k}new = F_{i,j}^{k}old×(1+t(k) Fi,jknew=Fi,jkold×(1+t(k)

2.2 小组训练

集体训练完成后,足球训练过程进入分组训练阶段,教练员根据球员的特点(每个维度都是一个特征值)将球员分为前锋、中场、后卫和守门员四类。
在这里插入图片描述

2.3 个人加训

F b e s t k n e w = F b e s t k o l d × ( 1 + ( 1 − 1 / k ) × G a u s s s ) + 1 / k × C a u c h y ) F_{best}^{k}new = F_{best}^{k}old×(1+(1-1/k)×Gausss)+1/k×Cauchy) Fbestknew=Fbestkold×(1+11/k)×Gausss+1/k×Cauchy)

3.Matlab源代码下载

[(1)2024年新提出的算法|足球队训练算法(FTTA)跑CEC2005数据集]

Zhirui Tian, Mei Gai,Football team training algorithm: A novel sport-inspired meta-heuristic optimization algorithm for global optimization, Expert Systems with Applications, Volume 245, 2024,123088.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

算法小狂人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值