【概率论】多维随机变量及其分布

本文详细介绍了多维随机变量的概念,包括联合分布函数、联合分布列、联合密度函数的基本性质。还探讨了边际分布、随机变量的独立性以及条件分布,提供了离散和连续情况下的条件分布公式。此外,还涉及了多维随机变量函数的分布,如卷积公式、最大值和最小值的分布,并举例说明了正态分布和伽马分布的可加性。最后提到了变量变换法在求解复杂分布中的应用。
摘要由CSDN通过智能技术生成

多维随机变量及其分布

多维随机变量及联合分布

多维随机变量

如果 X 1 ( ω ) , X 2 ( ω ) ⋯ X n ( ω ) X_1(\omega),X_2(\omega)\cdots X_n(\omega) X1(ω),X2(ω)Xn(ω) 是定义在同一个样本空间 Ω = ( ω ) \Omega=(\omega) Ω=(ω) 上的n维随机变量,则称 ( X 1 ( ω ) , X 2 ( ω ) ⋯ X n ( ω ) ) (X_1(\omega),X_2(\omega)\cdots X_n(\omega)) (X1(ω),X2(ω)Xn(ω))n维随机变量.

对于不同样本空间 Ω 1 , Ω 2 \Omega_1,\Omega_2 Ω1,Ω2上的随机变量,则在乘积空间 Ω 1 ∗ Ω 2 \Omega_1*\Omega_2 Ω1Ω2={ ( ω 1 , ω 2 ) : ω 1 ∈ Ω 1 , ω 2 ∈ Ω 2 (\omega_1,\omega_2):\omega_1\in\Omega_1,\omega_2\in\Omega_2 (ω1,ω2):ω1Ω1,ω2Ω2}及其事件域讨论.

联合分布函数

定义

对任意的 n n n 个实数 x 1 , x 2 , ⋯   , x n , x_1,x_2,\cdots,x_n, x1,x2,,xn, n n n 个事件{ X 1 ≤ x 1 X_1\le x_1 X1x1 } , , { X 2 ≤ x 2 X_2\le x_2 X2x2 } , , ⋯   , \cdots, ,{ X n ≤ x n X_n\le x_n Xnxn }同时发生的概率:
F ( x 1 , x 2 , ⋯   , x n ) = P ( X 1 ≤ x 1 , X 2 ≤ x 2 , X n ≤ x n ) F(x_1,x_2,\cdots,x_n)=P(X_1\le x_1,X_2\le x_2,X_n\le x_n) F(x1,x2,,xn)=P(X1x1,X2x2,Xnxn)称为 n n n 维随机变量 ( X 1 ( ω ) , X 2 ( ω ) ⋯ X n ( ω ) ) (X_1(\omega),X_2(\omega)\cdots X_n(\omega)) (X1(ω),X2(ω)Xn(ω))联合分布函数.

基本性质
  1. 单调性

    F ( x , y ) F(x,y) F(x,y) 分别对 x x x y y y 是单调非减的.

  2. 有界性

    对任意的 x x x y y y,有 0 ≤ F ( x , y ) ≤ 1 0\le F(x,y)\le 1 0F(x,y)1

    F ( − ∞ , y ) = lim ⁡ x → − ∞ F ( x , y ) = 0 F(-\infty,y)=\lim\limits_{x\to-\infty}F(x,y)=0 F(,y)=xlimF(x,y)=0 F ( x , − ∞ ) = lim ⁡ y → − ∞ F ( x , y ) = 0 F(x,-\infty)=\lim\limits_{y\to-\infty}F(x,y)=0 F(x,)=ylimF(x,y)=0 F ( ∞ , ∞ ) = lim ⁡ x , y → ∞ F ( x , y ) = 1 F(\infty,\infty)=\lim\limits_{x,y\to\infty}F(x,y)=1 F(,)=x,ylimF(x,y)=1

  3. 右连续性

    F ( x , y ) F(x,y) F(x,y) x x x y y y 都是右连续的,即
    F ( x + 0 , y ) = F ( x , y ) F(x+0,y)=F(x,y) F(x+0,y)=F(x,y) F ( x , y + 0 ) = F ( x , y ) F(x,y+0)=F(x,y) F(x,y+0)=F(x,y)

  4. 非负性

    对任意的 a < b a<b a<b c < d c<d c<d
    P ( a < X ≤ b , c < Y ≤ d ) = F ( b , d ) − F ( a , d ) − F ( b , c ) + F ( a , c ) ≥ 0 P(a<X\le b,c<Y\le d)=F(b,d)-F(a,d)-F(b,c)+F(a,c)\ge0 P(a<Xb,c<Yd)=F(b,d)F(a,d)F(b,c)+F(a,c)0

联合分布列

定义

如果二维随机变量 ( X , Y ) (X,Y) (X,Y) 只取有限个或可列个数对 ( x , y ) (x,y) (x,y),则称 ( X , Y ) (X,Y) (X,Y) 为二维离散随机变量,称
p i j = P ( X = x i , Y = y j ) i , j = 1 , 2 , ⋯ p_{ij}=P(X=x_i,Y=y_j) i,j=1,2,\cdots pij=P(X=xi,Y=yj)i,j=1,2, ( X , Y ) (X,Y) (X,Y)联合分布列.

基本性质
  1. 非负性 p i j ≥ 0 p_{ij}\ge0 pij0
  2. 正则性 ∑ i = 1 ∞ ∑ j = 1 ∞ p i j = 1 \sum\limits_{i=1}^{\infty}\sum\limits_{j=1}^{\infty}p_{ij}=1 i=1j=1pij=1

联合密度函数

定义

如果存在二元非负函数 p ( x , y ) p(x,y) p(x,y),使得二维随机变量 ( X , Y ) (X,Y) (X,Y) 的分布函数 F ( x , y ) F(x,y) F(x,y) 可表示为
F ( x , y ) = ∫ − ∞ x ∫ − ∞ y p ( u , v ) d v d u F(x,y)=\int_{-\infty}^x\int_{-\infty}^yp(u,v)dvdu F(x,y)=xyp(u,v)dvdu则称 ( X , Y ) (X,Y) (X,Y) 为二维连续随机变量,称 p ( u

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值