【概率论】多维随机变量的特征数

本文详细介绍了多维随机变量的数学期望、条件数学期望及其运算性质,包括重期望公式和协方差的概念、性质。同时讨论了相关系数,以及数学期望向量和协方差矩阵在二维及更高维度随机变量中的应用。
摘要由CSDN通过智能技术生成

多维随机变量的特征数

数学期望

二维随机变量的数学期望

若二维随机变量 ( X , Y ) (X,Y) (X,Y) 的分布用联合发布列或联合密度函数表示,则 Z = g ( X , Y ) Z=g(X,Y) Z=g(X,Y)数学期望
E ( Z ) = { ∑ i ∑ j g ( x i , y j ) P ( X = x i , Y = y j ) 离 散 ∫ − ∞ ∞ ∫ − ∞ ∞ g ( x , y ) p ( x , y ) d x d y 连 续 E(Z)=\left\{ \begin{array}{rcl} \sum\limits_i\sum\limits_jg(x_i,y_j)P(X=x_i,Y=y_j) & & {离散}\\ \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}g(x,y)p(x,y)dxdy & & {连续}\\ \end{array} \right. E(Z)={ ijg(xi,yj)P(X=xi,Y=yj)g(x,y)p(x,y)dxdy

条件数学期望

离 散 : E ( X ∣ Y = y ) = ∑ i x i P ( X = x i ∣ Y = y ) 离散:E(X|Y=y)=\sum\limits_ix_iP(X=x_i|Y=y) :E(XY=y)=ixiP(X=xiY=y) 连 续 : E ( X ∣ Y = y ) = ∫ − ∞ ∞ x p ( x ∣ y ) d x 连续:E(X|Y=y)=\int_{-\infty}^{\infty}xp(x|y)dx :E(XY=y)=xp(xy)dx

重期望公式

( X , Y ) (X,Y) (X,Y) 是二维随机变量,且 E ( X ) E(X) E(X) 存在,则
E ( X ) = E ( E ( X ∣ Y ) ) E(X)=E(E(X|Y)) E(X)=E(E(XY))

  • 离散:
    E ( x ) = ∑ j E ( X ∣ Y = y j ) P ( Y = y j ) E(x)=\sum\limits_jE(X|Y=y_j)P(Y=y_j) E(x)=
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值