【复变】解析函数孤立奇点类型的判断及应用

本文详细介绍了复变函数孤立奇点的类型,包括可去奇点、极点和本性奇点,并提供了判别方法。讨论了零点与极点的关系,以及在无穷远点的情况。通过例题展示了如何实际判断孤立奇点的类型。
摘要由CSDN通过智能技术生成

解析函数孤立奇点类型的判断及应用

预备知识

定义

如果函数 f ( z ) f(z) f(z) 在点 a a a 的某一去心邻域 K − a : 0 < ∣ z − a ∣ < R K-{a}:0<|z-a|<R Ka:0<za<R (即除去圆心 a a a 的某圆)内解析,点 a a a f ( z ) f(z) f(z) 的奇点,则称 a a a f ( z ) f(z) f(z) 的一个孤立奇点
如果 a a a f ( z ) f(z) f(z) 的一个孤立奇点,则必存在 R > 0 R>0 R>0 ,使得 f ( z ) f(z) f(z) 在点 a a a 的去心邻域 K − a : 0 < ∣ z − a ∣ < R K-{a}:0<|z-a|<R Ka:0<za<R 内可展成Laurent级数.

孤立奇点的类型

z 0 z_0 z0 f ( z ) f(z) f(z) 的孤立奇点,则 f ( z ) f(z) f(z) 在点 z 0 z_0 z0 的去心邻域 K − z 0 : 0 < ∣ z − z 0 ∣ < R K-{z_0}:0<|z-z_0|<R Kz0:0<zz0<R 内可展成laurent级数 f ( z ) = ∑ n = − ∞ ∞ C n ( z − z 0 ) n f(z)=\sum\limits_{n=-\infty}^\infty C_n(z-z_0)^n f(z)=n=Cn(zz0)n .其中称负幂部分 ∑ n = 1 ∞ C − n ( z − z 0 ) − n \sum\limits_{n=1}^\infty C_{-n}(z-z_0)^{-n} n=1Cn(zz0)n f ( z ) f(z) f(z) 在点 z 0 z_0 z0 的主要部分。
孤立奇点按函数在 z 0 z_0 z0 的去心邻域内的laurent展开式中负幂项的个数分类

  • 可去奇点:展开式中不含 z − z 0 z-z_0 zz0 的负幂项

    f ( z ) = c 0 + c 1 ( z − z 0 ) + c 2 ( z − z 0 ) 2 + ⋯ f(z)=c_0+c_1(z-z_0)+c_2(z-z_0)^2+\cdots f(z)=c0+c1(zz0)+c2(zz0)2+
  • 极点:展开式中含有限 z − z 0 z-z_0 zz0 的负幂项

    f ( z ) = c − m ( z − z 0 ) m + c − ( m − 1 ) ( z − z 0 ) m − 1 + ⋯ + c − 1 ( z − z 0 ) + c 0 + c 1 ( z − z 0 ) + c 2 ( z − z 0 ) 2 + ⋯ = g ( z ) ( z − z 0 ) m f(z)=\frac{c_{-m}}{(z-z_0)^m}+\frac{c_{-(m-1)}}{(z-z_0)^{m-1}}+\cdots+\frac{c_{-1}}{(z-z_0)}+c_0+c_1(z-z_0)+c_2(z-z_0)^2+\cdots=\frac{g(z)}{(z-z_0)^m} f(z)=(zz0)m
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值