【论文泛读】基于LSTM和高斯过程回归的蜂窝流量负荷预测

这一篇争取今明两天看完wwww,后续想要再回过头看一下综述,简单了解一下基站休眠的文章。

1.Introduction

对蜂窝流量负荷预测的要求:准确、及时(和上篇文章一样),意义:实现自动规划、部署超密集基站、多维资源管理、基站开关(类似于上一篇文章提到的基站休眠吗)

通过以上技术,可以减少网络拥塞、提高用户体验、降低网络运营成本。

还提到了长期预测和短期预测的问题。

长期预测:预测未来几天或几周内整个网络的演变趋势,用于网络基础设施的规划和部署;

短期预测:通常针对一秒钟或更短时间内的网络负载变化以进行实时网络资源管理;

中期预测:侧重于分钟或小时级别的相对较大的时间尺度,预测结果用于不同网络切片之间的动态资源调整。

尽管LSTM能够通过使用记忆模块对长期依赖关系进行建模,却无法处理周期长于LSTM网络最大周期的分量。因此,在实践中,LSTM预测的准确性可能会受到限制。

已经提出了各种时域序列和频域分析方法来分解复杂的时间序列。

os:介绍部分提到的流量预测问题仍集中在准确性和及时性,重点探讨了不同时间尺度下的预测问题,在长期预测问题上,引出了本文的LSTM模型。

2.Dataset Description And Problem Statement

对预测问题的建模还是那样)

3. Proposed Prediction Techniques

蜂窝流量序列的周期性分量可以被建模为有限周期性信号的总和:

介绍了LSTM结构,长期记忆C、短期记忆h。

高斯过程回归 Gaussian Process Regression

中心极限定理告诉我们,当样本量足够大时,样本均值的分布慢慢变成正态分布,这与样本总体的数据无关。

残差分量主要由随机/突发分量组成,基于中心极限定理,该分量遵循高概率的高斯分布。为了进一步提高突发流量的预测性能,我们使用高斯过程回归方法来预测残差分量。

用高斯过程作为先验来学习函数,其中比较重要的是核函数部分。暂时没看懂,后续详细学习。

总结:整体的算法步骤如下:

1.初始化,整个数据划分为训练集和测试集;

2.对训练数据X_{t}进行傅里叶变换,提取K个最大的频率;

3.通过LS估计或曲线拟合工具来估计与提取的频率相对应的正弦信号的参数;

4.从训练数据中减去周期分量,X_{t}^{r}= X_{t}-X_{t}^{p}

5.用Xrt、Yrt训练LSTM网络;

6.计算残差分量X_{t}^{o}= X_{t}^{r}-Y_{t}^{r}

7.用高斯过程回归训练Xot

8.用提取的频率预测大周期分量(?怎么预测的)

9. 使用经过训练的LSTM网络预测小分量

10.用GPR处理残差

11.将步骤8-10中的结果进行求和,并获得预测的流量。

4.Experiment Results

与baseline的对比:

当时间范围大于6小时时,ARIMA方案的预测结果收敛于一个常数值。LSTM方案预测性能也随着预测时间范围的增加而恶化。

  • 4
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值