【时空流量预测笔记1】基于相关卷积LSTM和自注意网络的蜂窝网络流量预测

基于相关卷积LSTM和自注意网络的蜂窝网络流量预测

Cellular Network Traffic Prediction Based on Correlation ConvLSTM and Self-Attention Network

【摘要】预测网络流量未来动态性能,提出了一种基于相关性的ConvLSTM和基于自注意的网络(CCSANet)来准确预测复杂的蜂窝网络流量。

1.Introduction

network traffic prediction (NTP)为通信网络管理和优化提供了决策依据,预测网络流量的未来动态性对于支持5G智能系统和自动化网络管理至关重要。

在最近的工作中,NTP被作为时间序列分析问题(包括经典预测方法和神经网络预测方法)。

经典预测方法多依赖于历史流量平均值,无法准确预测复杂的网络流量。神经网络方法则能提取复杂特征。通信流量(communication traffic)的变化具有时间空间的自相关性(autocorrelation)。但LSTM方法更多关注时间序列特征,对空间特征不够重视。(卷积网络可用来提取空间特征)

相关工作:

(1)基于密集卷积神经网络(STDenseNet)的蜂窝流量预测方法.2015★→迁移学习.2019★

(2)混合时空网络(HSTNet)

(3)迁移学习★考虑更多外部因素,提出STCNet(based on ConvLSTM 就是施博士的那一篇)

(4)时间型注意力辅助卷积神经网络(TWACNet)

这些方法兼顾了时间和空间特征、过去和未来的数据,但主要用CNN或ConvLSTM提取空间特征,可能无法完全捕捉相邻特征之间的空间相关性。

本文基于ConvLSTM和自注意力机制提出了CCSANet,利用相关层来计算相邻蜂窝流量特征的相关性,从而解决上述问题。自注意力机制用于聚合提取外部因素(external factors)和网络流量特征的依赖性的能力。

 2.Data Observation and Analysis

A.城市蜂窝流量数据集

采用数据集:Telecom Italia Big Data Challenge

包含在意大利米兰记录的三个真实网络流量数据(短信、呼叫和互联网),为期两个月。将米兰的城市分为H×W个子区域单元,H和W分别表示单元的行数和列数,数据集覆盖0.0552km²,共划分为10000个单元的网格(H=W=100)每个单元的值表示该区域中流量的统计值。

B.数据分析
1)时域

(某特定城市单元中流量在一段时间内的变化情况)

三者动态变化趋势相似,且有周期性,尤其是周末的流量低于工作日。

2)空间域

(某时刻下一定区域内的流量值)

直观上:整个城市的交通分布不均衡,城市中心的交通比郊区更密集。

但预测模型应该能够捕捉到不同区域流量之间的空间相关性。

→使用Pearson相关系数评估目标单元x^{(i, j)}和其相邻单元的相关性。

Pearson相关系数-皮尔逊相关系数

两个变量之间的协方差和标准差之积的商(或者说,归一化的协方差)

协方差用于刻画两个随机变量是否有相关性
相关系数(correlation coefficient)用于刻画两个随机变量相关性的强弱

(这里方差和标准差分母为n-1,因为此处为样本标准差,总体标准差分母为n。)

参考皮尔逊相关系数(Pearson Correlation Coefficient)

 在Fig.2(b),我们选择坐标为(4,4)的单元作为目标单元,并计算其与其他单元的Pearson相关性。可以看出单元之间的相关性与距离有关;同时,(5,3)和(5,5)与目标单元距离相同但相关性相差较大,说明相关性还与其他因素有关。

因此,我们需要研究新的方法来捕捉蜂窝网络流量的时空潜在相关性。

3.The Proposed Prediction Model

CCSANet由四部分组成: Corr-ConvLSTM,Self-Attention Module,

Time Embedding,Fusion Output Module, 

 X_{c,t}表示时间 t 下的网络流量,其中 c \in {sms, call, internet}。

A. Corr-ConvLSTM

1.通过卷积运算提取输入Xc,tXc,t-1的多通道特征ft,kft−1,k,其中*表示卷积算子,k是通道数,k∈{1,2,3}。

2.相关函数(correlation function,CF)用于沿着信道维度计算每个信道的两个连续蜂窝流量特征的相关性Ct,k,CF在本文中是点积算子。k个信道的相关性被级联以获得相关性图Ct

 

3.将相关图Ct传递到卷积层和全局平均池化层(GAPL)。最后,我们获得了因子ut,它测量两个连续的蜂窝流量特征之间的动态变化。

W和b是权重和偏移,C_{t}^{o} \in R^{H\times W}

我们使用ut来确定两个连续的蜂窝流量特征之间的相关性信息,并将其引入到ConvLSTM中。然后Corr-ConvLSTM通过以下公式对输入Xc,t进行计算,最后得到输出O_{corr} \in R^{p\times H\times W}

长短期记忆网络LSTM

输入和隐状态被具有sigmoid和tanh激活函数的全连接层处理,遗忘门,输入门和输出门的值都在(0,1)内。

B.Self-Attention Module

采用自注意模块来提取外部因素的特征表示,其中e\in {BSs,POIs,Socials} (base stations, point of informations, Socials,这三者是【相关工作(3)】中涉及的外部因素)

外部输入Xe被映射到不同的特征空间中作为查询、键、值。卷积层用于提取特征,查询、键、值的维度与信道数相关,dk、dv是通道数。

每对点的相似性得分通过应用矩阵乘法计算为:(该部分用于定义计算,用于引出下文第i个点和第j个点之间的相似性)

 

第i个点和第j个点之间的相似性可以被索引为ei,j ,其中Xe,iXe,j是形状为dk×1的特征向量。将相似度分数与列一起标准化:

softmax函数

能够将未规范化的预测变换为非负数并且总和为1。首先对未规范化的预测求幂,从而确保输出非负。求幂后的结果除以幂的总和,保证最终输出的概率总和为1。

第i个位置的聚合特征是用所有位置的加权和来计算的:

括号中是权重乘以值的第j列。We和be是全连接层需要学习的参数。

这里有一点疑问,输出的维度在reshape前不应该是p\times N吗?激活函数应该不会改变数据维度,怎么会是pN\times 1呢?

解决:p×N的输入经过pN×p×N的全连接层,输出为pN×1.

由于N=H×W,故最终可以reshape为输出Oe。

C.Time Embedding

共提取了四种数据:is_weekday(1/0),is_weekend(1/0),day_of_week(0-6),hour_of_day(0-23)并将其视为特征。33维特征向量Xd输入到两层完全连接层,输出向量为v_{d}\in R^{pHW\times 1}

为什么是33维呢?其中,is_weekday(1/0)和is_weekend(1/0)只需要其一即可,因为二者是对立事件,为2维;day_of_week(0-6),hour_of_day(0-23)分别为7维和24维,四种特征共33维。

 输出向量reshape为输出O_{d}\in R^{p\times H\times W},与融合输出模块的输入结果合并。

D.Fusion Output Module

 不同单元的流量不仅与连续单元的相关性有关,还与周期有关。

为了捕捉这种关系,我们首先融合相关性和周期性特征,以获得融合的特征Oall。

然后我们通过多个DenseBlock(Conv+BN+ReLU+DeformConv)提取融合的特征

最后,通过sigmoid激活函数获得预测的值。

4.Experiments

A.Experimental Process and Parameter Settings

预处理的方法。训练集和测试集的划分。为了避免过拟合,划分出了测试集。 优化器的选择,小批量。分段衰减学习率。不同的激活函数。

与其他方法的对比和评价指标的选择。 

B.Experiment Analysis

与其他baseline models作对比:

ARIMA在三个流量数据集上具有最高的MAE和RMSE,因为它只考虑数据的历史时间特征,而没有考虑其他依赖关系。LSTM的性能优于统计方法,但不如其他深度学习方法。STDenseNet忽略了外部因素的影响,而HSTNet只考虑了时间属性,忽略了其他外部因素,如BS信息和POI分布。TWACNet采用了基于卷积的网络,但其性能低于基于ConvLSTM的方法。STCNet使用基于ConvLSTM的网络,但没有结合自注意和相关层来增强特征提取。

所有上述工作主要依赖于网络(例如CNN、ConvLSTM和SA)来提取隐藏信息,这可能不会对连续的时空特征进行建模。与baseline models相比,CCSANet实现了最佳性能。一方面,CCSANet利用ConvLSTM中的相关层来提高其提取连续时空特征的能力。另一方面,CCSANet结合了自注意机制,以聚合提取外部因素与网络流量特征之间相关性的能力。

为了进一步了解NTP的有效性,绘制了随机选择的NTP结果的互联网快照。与baseline models方法相比,CCSANet显示出更好的预测性能,与图中的基本事实相比,每个单元的预测结果都非常相似。

5.Conclusion

本文提出了一种新的流量预测方法CCSANet,该方法通过在ConvLSTM中采用相关层来增强提取连续空间特征的能力。此外,该方法通过采用自注意机制,增强了提取外部因素和网络流量特征间依赖性的能力。

实验结果表明,在真实的蜂窝网络流量数据集上,CCSANet在RMSE和MAE方面优于SOTA方法。这表明我们提出的方法可以用来提高蜂窝网络流量预测的准确性。

  • 22
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值