目录
数据结构:
实际案例问题:
判断子串在母串中第一次出现的位置
暴力算法
public class ViolenceMatch {
public static void main(String[] args) {
String str1 = "AABBCCABCABACBC";
String str2 = "ABC";
int index = violenceMatch(str1, str2);
}
public static int violenceMatch(String str1, String str2) {
char[] s1 = str1.toCharArray();
char[] s2 = str2.toCharArray();
int s1Len = s1.length;
int s2Len = s2.length;
int i = 0;
int j = 0;
while (i < s1Len && j < s2Len) {
if (s1[i] == s2[j]) {
// 匹配成功
i++;
j++;
} else {
i = i - (j - 1);
j = 0;
}
}
if (j == s2Len) {
// 匹配成功
return i - j;
}
return -1;
}
}
KMP算法
寻找前缀和后缀的共有元素(部分匹配值);
1、先得到子串的部分匹配表;
public class KMPAlgorithm {
public static void main(String[] args) {
String str1 = "BBC ABCDAB ABCDABCDABDE";
String str2 = "ABCDABD";
int[] next = kmpNext(str2);
int res = kMPSearch(str1, str2, next);
}
/**
* @param str1 母串
* @param str2 子串
* @param next 字串的部分匹配表
* @return
*/
public static int kMPSearch(String str1, String str2, int[] next) {
for (int i = 0, j = 0; i < str1.length(); i++) {
// kmp算法核心
while (j > 0 && str1.charAt(i) != str2.charAt(j)) {
j = next[j - 1];
}
if (str1.charAt(i) == str2.charAt(j)) {
j++;
}
if (j == str2.length()) { // 找到了
return i - j + 1;
}
}
return -1;
}
/**
* 获取字符串的部分匹配值
*
* @param dest
* @return
*/
public static int[] kmpNext(String dest) {
// 创建一个next数组保存部分匹配值
int[] next = new int[dest.length()];
next[0] = 0; // 如果字符串的长度为1,部分匹配值就是0
for (int i = 1, j = 0; i < dest.length(); i++) {
while (j > 0 && dest.charAt(i) != dest.charAt(j)) {
j = next[j - 1];
}
// 条件满足时,部分匹配值加一
if (dest.charAt(i) == dest.charAt(j)) {
j++;
}
next[i] = j;
}
return next;
}
}
汉诺塔问题
用到了递归;
分治算法
1、如果只有一个盘,A->C;
2、如果n>=2,我们总是可以看作是2个盘,最下面的盘和上面的盘;
1)先把最上面的盘,A->B;
2)再把最下面的盘,A->C;
3)把B塔的所有盘,从B盘移动到C盘;
/**
* 汉诺塔移动的方法
* 分治算法
*
* @param num 有几个盘需要移动
* @param a 第一个盘
* @param b
* @param c
*/
public static void hanoiTower(int num, char a, char b, char c) {
// 1、如果只有一个盘,A->C;
if (num == 1) {
System.out.println("第1个盘:" + a + "->" + c);
} else {
// 2、如果n>=2,我们总是可以看作是2个盘,最下面的盘和上面的盘;
// 1)先把最上面的所有盘,A->B;
hanoiTower(num - 1, a, c, b);
// 2)再把最下面的盘,A->C;
System.out.println("第"+num+"个盘:" + a + "->" + c);
// 3)把B塔的所有盘,从B盘移动到C盘;
hanoiTower(num - 1, b, a, c);
}
}
八皇后问题
要求8x8个格子,不能同横、竖、斜;
回溯算法
马踏棋盘算法
也叫骑士周游问题,要求马在任意一个位置,每个格子只能走一次,使马把8x8个格子全部走完;
图的深度优化便利算法(DFS)
贪心算法
约瑟夫环问题
也叫丢手帕问题;
最短路径问题
背包问题
动态规划
下一个阶段的求解是建立在上一个阶段的解的基础上的;
01背包:背包内的物品不能重复;
完全背包:可以重复;
1)v[i][0] = v[0][j] = 0; // 表示填入表的第一行和和第一列的值是0;
2)当w[i] > j时,v[i][j] = v[i - 1][j]; // 当准备加入的新增的商品的容量大于当前背包的容量时,就直接使用上一个单元格的值;
3)当w[i] <= j时,v[i][j] = max { v[i - 1][j], v[i - 1][j - w[i]] + v[i] } ;// 当准备加入的新增的商品的容量小于等于当前背包的容量;
// 装入的方式应该是求一个最大值:
v[i - 1][j] 上一个单元格装入的最大值;
v[i] 当前商品的价值;w[i] 新增商品(下标为i的物品)的容量;
j 当前背包的容量;
v[i - 1][j - w[i]] 可以找到剩余空间(j-w[i])的能放的最大价值;
动态排序代码:
public class KnapsackProblem {
public static void main(String[] args) {
int[] w = {1, 4, 3}; // 物品的重量
int[] val = {1500, 3000, 2000}; // 物品的价值
int m = 4; // 背包的容量
int n = val.length; // 物品的个数
// v[i][j] 表示在前i个物品中,能装入容量为j的背包中的,最大价值
int[][] v = new int[n + 1][m + 1]; // 表
int[][] path = new int[n + 1][m + 1];// 记录存放的物品的情况
// 初始化第一行和第一列
for (int i = 0; i < v.length; i++) {
v[i][0] = 0; // 第一列设置为0
}
for (int j = 0; j < v[0].length; j++) {
v[0][j] = 0; // 第一行设置为0
}
// 开始动态规划
for (int i = 1; i < v.length; i++) { // 不处理第一行第一列
for (int j = 1; j < v[i].length; j++) {
// 套用公式
if (w[i - 1] > j) { // 因为i是从1开始的
// 当准备加入的新增的商品的容量大于当前背包的容量时,就直接使用上一个单元格的值
v[i][j] = v[i - 1][j];
} else {
// 当准备加入的新增的商品的容量小于等于当前背包的容量时
// 记录存放的物品的情况
if (v[i - 1][j] < val[i - 1] + v[i - 1][j - w[i - 1]]) {
v[i][j] = val[i - 1] + v[i - 1][j - w[i - 1]];
// 把当前的情况记录到path
path[i][j] = 1;
} else {
v[i][j] = v[i - 1][j];
}
}
}
}
// 遍历展示放入背包的最优解
int i = path.length - 1;
int j = path[0].length - 1;
while (i > 0 && j > 0) {
if (path[i][j] > 0) {
System.out.printf("第%d个物品放入背包\n", i);
j -= w[i - 1];
}
i--;
}
}
}
排序算法
查找算法
树结构
图结构
稀疏数组
目的:压缩二维数组;
当一个二维数组中大部分元素为0,或者都为同一个值时,可以用稀疏数组来保持该数组。
把行和列和值的记录在一个小规模的数组中,从而缩小程序的规模;
普通数组与稀疏数组转换的代码:
int row, col;
row = col = 11;
int[][] chessArr1 = new int[row][col];
chessArr1[1][1] = 1;
chessArr1[2][3] = 2;
chessArr1[4][5] = 2;
int count = 0;
for (int i = 0; i < row; i++) {
for (int j = 0; j < col; j++) {
if (chessArr1[i][j] != 0) {
count++;
}
}
}
int[][] parseArr = new int[count + 1][3];
parseArr[0][0] = row;
parseArr[0][1] = col;
parseArr[0][2] = count;
count = 1;
for (int i = 0; i < row; i++) {
for (int j = 0; j < col; j++) {
if (chessArr1[i][j] != 0) {
parseArr[count][0] = i;
parseArr[count][1] = j;
parseArr[count][2] = chessArr1[i][j];
count++;
}
}
}
// write to io
String FILE = "D:\\Java\\parseArr.txt";
BufferedWriter bw = new BufferedWriter(new FileWriter(FILE));
for (int[] ints : parseArr) {
bw.write(Arrays.toString(ints));
bw.newLine();
}
bw.close();
// read from io
BufferedReader br = new BufferedReader(new FileReader(FILE));
String tmpS = br.readLine();
String[] tmpSS = tmpS.substring(1, tmpS.length() - 1).split(",");
int[][] chessArr2 = new int[Integer.parseInt(tmpSS[0])][Integer.parseInt(tmpSS[1].trim())];
while (true) {
tmpS = br.readLine();
if (tmpS == null || tmpS.isEmpty()) break;
tmpSS = tmpS.substring(1, tmpS.length() - 1).split(",");
chessArr2[Integer.parseInt(tmpSS[0])][Integer.parseInt(tmpSS[1].trim())] = Integer.parseInt(tmpSS[2].trim());
}
br.close();
程序员常用的十大算法:
二分查找算法:
分治算法:
动态规划算法:
KMP算法:
字符串匹配;
贪心算法
贪心算法的结果不一定是最优解;
每一次选择都是一次最优解;
应用案例,集合覆盖问题
1、遍历所有电台,找到一个覆盖了最多未覆盖地区的电台;
2、将这些电台加入到如ArrayList等集合,想办法把该电台覆盖的地区在下次比较时去掉;
3、重复第一步直到覆盖了全部的地区;
import java.util.*;
public class GreedyAlgorithm {
public static void main(String[] args) {
// 贪心算法
// 创建广播电台
Map<String, HashSet<String>> broadCasts = new HashMap<>();
// 将各个电台放入到broadCasts
HashSet<String> hashSet1 = new HashSet<>();
hashSet1.add("北京");
hashSet1.add("上海");
hashSet1.add("天津");
HashSet<String> hashSet2 = new HashSet<>();
hashSet2.add("广州");
hashSet2.add("北京");
hashSet2.add("深圳");
HashSet<String> hashSet3 = new HashSet<>();
hashSet3.add("成都");
hashSet3.add("上海");
hashSet3.add("杭州");
HashSet<String> hashSet4 = new HashSet<>();
hashSet4.add("上海");
hashSet4.add("天津");
HashSet<String> hashSet5 = new HashSet<>();
hashSet5.add("杭州");
hashSet5.add("大连");
broadCasts.put("k1", hashSet1);
broadCasts.put("k2", hashSet2);
broadCasts.put("k3", hashSet3);
broadCasts.put("k4", hashSet4);
broadCasts.put("k5", hashSet5);
// 存放所有的地区
HashSet<String> allAreas = new HashSet<>();
allAreas.add("北京");
allAreas.add("上海");
allAreas.add("天津");
allAreas.add("广州");
allAreas.add("深圳");
allAreas.add("成都");
allAreas.add("杭州");
allAreas.add("大连");
// 存放选择的电台K集合
List<String> selects = new ArrayList<>();
// 临时的集合,在遍历的过程中,存放遍历过程中的电台覆盖的地区和当前还没有覆盖的地区的交集
HashSet<String> tempSet = new HashSet<>();
// 保存在一次遍历过程中,能够覆盖最大未覆盖地区对应的电台的key
String maxKey = null;
// 如果maxKey不等于空,则会加入到selects
while (allAreas.size() != 0) { // 如果allAreas不为0,则还没有覆盖到所有地区
maxKey = null;
for (String key : broadCasts.keySet()) {
tempSet.clear();
// 当前电台能够覆盖的地区
HashSet<String> areas = broadCasts.get(key);
tempSet.addAll(areas);
// 求交集,赋值给tempSet
tempSet.retainAll(allAreas);
// 如果当前集合包含的未覆盖地区的数量,比maxKey指向的集合的未覆盖的地区还要多
// 就需要重置maxKey
// 每次都选择一个最优的K
if (tempSet.size() > 0 && (maxKey == null || (tempSet.size() > broadCasts.get(maxKey).size()))) {
maxKey = key;
}
}
if (maxKey != null) {
selects.add(maxKey);
// 将maxKey指向的广播电台覆盖的地区从allAreas清除掉
allAreas.removeAll(broadCasts.get(maxKey));
}
}
}
}
普里姆算法
最小生成树MST问题,也叫最修路问题;
1)给一个带权的无向连通图,如何选取一棵生成树,使树上所有的边上权的总和为最小;
2)N个顶点,一定有N-1条边;
3)最小生成树主要是普里姆算法和克鲁斯卡尔算法;
public class PrimAlgorithm {
public static void main(String[] args) {
// 普利姆算法
// 用到了邻接矩阵
char[] data = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
int verxs = data.length;
// 邻接矩阵,10000表示不联通
int[][] weight = {
{10000, 5, 7, 10000, 10000, 10000, 2},
{5, 10000, 10000, 9, 10000, 10000, 3},
{7, 10000, 10000, 10000, 8, 10000, 10000},
{10000, 9, 10000, 10000, 10000, 4, 10000},
{10000, 10000, 8, 10000, 10000, 5, 4},
{10000, 10000, 10000, 4, 5, 10000, 6},
{2, 3, 10000, 10000, 4, 6, 10000}
};
MGraph graph = new MGraph(verxs);
MinTree minTree = new MinTree();
minTree.createGraph(graph, verxs, data, weight);
// 打印
minTree.showGraph(graph);
// 普利姆算法
minTree.prim(graph, 0);
}
}
/**
* 创建最小生成树
*/
class MinTree {
/**
* 创建邻接矩阵
*
* @param graph 图对象
* @param verxs 图对应的顶点的个数
* @param data 图的各个顶点的值
* @param weight 图的邻接矩阵
*/
public void createGraph(MGraph graph, int verxs, char[] data, int[][] weight) {
for (int i = 0; i < verxs; i++) {
graph.data[i] = data[i];
for (int j = 0; j < verxs; j++) {
graph.weight[i][j] = weight[i][j];
}
}
}
/**
* 显示图的邻接矩阵
*/
public void showGraph(MGraph graph) {
for (int[] link : graph.weight) {
System.out.println(Arrays.toString(link));
}
}
/**
* ;/
* 普利姆最小生成树算法
*
* @param graph 图
* @param v 图的第几个顶点开始生成 'A'->0 'B'->1
*/
public void prim(MGraph graph, int v) {
// 标记节点是否被访问过
int[] visited = new int[graph.verxs];
// 把当前节点标记为已访问
visited[v] = 1;
// 用h1和h2记录两个顶点的下标
int h1 = -1;
int h2 = -1;
int minWeight = 10000;
// 因为又graph.verxs个顶点,所以算法结束后,有graph.verxs-1条边
for (int k = 1; k < graph.verxs; k++) {
// 确定每一次生成的子图,和哪个节点的距离最近
for (int i = 0; i < graph.verxs; i++) { // 遍历已经访问过的节点
for (int j = 0; j < graph.verxs; j++) { // 遍历所有没有访问过的节点
if (visited[i] == 1 && visited[j] == 0 && graph.weight[i][j] < minWeight) {
// 已访问
minWeight = graph.weight[i][j];
h1 = i;
h2 = j;
}
}
}
System.out.println("边<" + graph.data[h1] + "," + graph.data[h2] + "> 权值:" + minWeight);
// 标记已经访问
visited[h2] = 1;
minWeight = 10000;
}
}
}
class MGraph {
/**
* 表示图的节点的个数
*/
int verxs;
/**
* 存放节点的数据
*/
char[] data;
/**
* 存放边,邻接矩阵
*/
int[][] weight;
public MGraph(int verxs) {
this.verxs = verxs;
data = new char[verxs];
weight = new int[verxs][verxs];
}
}
克鲁斯卡尔算法
也是最小生成树算法;
具体做法:首先构造一个只含n个顶点的森林,然后依权值从小到大从联通网中选择边加入到森林中,并使森林不产生回路,直到森林变成一棵树为止;
问题(1)对图的所有的边按照权值的大小进行排序;
问题(2)将边添加到最小生成树中,判断是否形成了回路;
public class KruskalCase {
/**
* 边的个数
*/
int edgeNum;
/**
* 顶点的数组
*/
char[] vertexs;
/**
* 邻接矩阵
*/
int[][] matrix;
/**
* 最大值表示路不通
*/
static final int INF = Integer.MAX_VALUE;
public KruskalCase(char[] vertexs, int[][] matrix) {
// 初始化点和边的数量
int vlen = vertexs.length;
// 初始化顶点,复制
this.vertexs = new char[vlen];
for (int i = 0; i < vertexs.length; i++) {
this.vertexs[i] = vertexs[i];
}
// 初始化边,复制
this.matrix = new int[vlen][vlen];
for (int i = 0; i < vlen; i++) {
for (int j = 0; j < vlen; j++) {
this.matrix[i][j] = matrix[i][j];
}
}
// 统计有多少条边
for (int i = 0; i < vlen; i++) {
for (int j = i + 1; j < vlen; j++) {
if (matrix[i][j] != INF) {
edgeNum++;
}
}
}
}
/**
* 打印邻接矩阵
*/
public void print() {
System.out.println("邻接矩阵为:");
for (int i = 0; i < vertexs.length; i++) {
for (int j = 0; j < vertexs.length; j++) {
System.out.printf("%10d\t", matrix[i][j]);
}
System.out.println(); // 换行
}
}
/**
* 对边进行排序
*
* @param eData
*/
private void sortEdges(EData[] eData) {
for (int i = 0; i < eData.length - 1; i++) {
for (int j = 0; j < eData.length - 1 - i; j++) {
if (eData[j].weight > eData[j + 1].weight) {
EData t = eData[j];
eData[j] = eData[j + 1];
eData[j + 1] = t;
}
}
}
}
/**
* @param ch 顶点的下标
* @return 顶点对应的下标
*/
public int getPosition(char ch) {
for (int i = 0; i < vertexs.length; i++) {
if (vertexs[i] == ch) {
return i;
}
}
return -1;
}
/**
* 获取图中的边,放到EData[]数组中,后面我们需要遍历该数组
* 通过matrix邻接矩阵来获取
*
* @return
*/
private EData[] getEdges() {
int index = 0;
EData[] edges = new EData[edgeNum];
for (int i = 0; i < vertexs.length; i++) {
for (int j = i + 1; j < vertexs.length; j++) {
// 有多少条边
if (matrix[i][j] != INF) {
edges[index++] = new EData(vertexs[i], vertexs[j], matrix[i][j]);
}
}
}
return edges;
}
/**
* 获取下标为i的顶点的终点的下标,用于后面判断两个顶点的终点是否相同
*
* @param ends 数组对应了各个顶点对应的终点是哪个
* @param i 表示的传入的顶点对应的下标
* @return
*/
private int getEnd(int[] ends, int i) {
while (ends[i] != 0) {
i = ends[i];
}
return i;
}
public void kruskal() {
// 最后结果数组的索引
int index = 0;
// 用于保存已有最小生成树,中的每个顶点在最小生成树中的终点
int[] ends = new int[edgeNum];
// 保存最后的最小生成树
EData[] rets = new EData[edgeNum];
// 获取图中所有的边的集合,一共有12条边
EData[] edges = getEdges();
sortEdges(edges);
// 遍历edges数组,并且确认不回路
for (int i = 0; i < edges.length; i++) {
// 获取第i条边的起点
int p1 = getPosition(edges[i].start);
// 获取第i条边的终点
int p2 = getPosition(edges[i].end);
// 获取p1这个顶点在已有最小生成树中的终点,(重要)
int m = getEnd(ends, p1);
// 获取p2这个顶点在已有最小生成树中的终点
int n = getEnd(ends, p2);
// 没有构成回路
if (m != n) {
// 设置m在最小生成树中的终点
ends[m] = n;
// 有一条边加入rets数组
rets[index++] = edges[i];
}
}
}
public static void main(String[] args) {
char[] vertexs = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
// 0,0 表示自己到自己的距离
int[][] matrix = {
{0, 12, INF, INF, INF, 16, 14},
{12, 0, 10, INF, INF, 7, INF},
{INF, 10, 0, 3, 5, 6, INF},
{INF, INF, 3, 0, 4, INF, INF},
{INF, INF, 5, 4, 0, 2, 8},
{16, 7, 6, INF, 2, 0, 9},
{14, INF, INF, INF, 8, 9, 0}
};
KruskalCase kruskalCase = new KruskalCase(vertexs, matrix);
kruskalCase.print();
EData[] edges = kruskalCase.getEdges();
kruskalCase.sortEdges(edges);
kruskalCase.kruskal();
}
}
/**
* 对象的实例表示一条边
* {'A','B',12}
*/
class EData {
/**
* 边的起点
*/
char start;
/**
* 边的终点
*/
char end;
/**
* 边的权值
*/
int weight;
public EData(char start, char end, int weight) {
this.start = start;
this.end = end;
this.weight = weight;
}
@Override
public String toString() {
return "EData{" +
"start=" + start +
", end=" + end +
", weight=" + weight +
'}';
}
}
迪杰斯特拉算法
最短路径算法,是图的广度遍历;
求出一个顶点到其他顶点的距离;
public class DijkstraAlgorithm {
}
class Graph {
/**
* 顶点数组
*/
char[] vertex;
/**
* 邻接矩阵
*/
int[][] matrix;
public Graph(char[] vertex, int[][] matrix) {
this.vertex = vertex;
this.matrix = matrix;
}
/**
* 显示图
*/
public void showGraph() {
for (int[] link : matrix) {
System.out.println(Arrays.toString(link));
}
}
/**
* 已经访问的顶点的集合
*/
VisitedVertex vv;
/**
* 迪杰斯特拉算法
*
* @param index 出发点,已经访问的节点
*/
public void dsj(int index) {
vv = new VisitedVertex(vertex.length, index);
// 更新index下标的顶点到周围的顶点的距离和前驱顶点
update(index);
for (int j = 1; j < vertex.length; j++) {
index = vv.updateArr();
update(index);
}
}
/**
* 更新index下标顶点到周围的顶点的距离,和周围顶点的前驱顶点
*
* @param index
*/
private void update(int index) {
int len = 0;
for (int j = 0; j < matrix[index].length; j++) {
// len:出发顶点到index顶点的距离 + 从index顶点到j顶点的距离的 合
len = vv.getDis(index) + matrix[index][j];
if (!vv.in(j) && len < vv.getDis(j)) {
vv.updatePre(j, index);
vv.updateDis(j, len);
}
}
}
public static void main(String[] args) {
char[] vertexs = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
int[][] matrix = new int[vertexs.length][vertexs.length];
final int N = 65535;
matrix[0] = new int[]{N, 5, 7, N, N, N, 2};
matrix[1] = new int[]{5, N, N, 9, N, N, 3};
matrix[2] = new int[]{7, N, N, N, 8, N, N};
matrix[3] = new int[]{N, 9, N, N, N, 4, N};
matrix[4] = new int[]{N, N, 8, N, N, 5, 4};
matrix[5] = new int[]{N, N, N, 4, 5, N, 6};
matrix[6] = new int[]{2, 3, N, N, 4, 6, N};
Graph graph = new Graph(vertexs, matrix);
graph.showGraph();
// 迪杰斯特拉算法,从G 6这个点到其他节点的距离
graph.dsj(2);
}
}
/**
* 已访问的顶点的集合
*/
class VisitedVertex {
/**
* 1已访问 0未访问
*/
int[] already_arr;
/**
* 每一个下标对应的值为前一个顶点,会动态更新
*/
int[] pre_visited;
/**
* 记录出发顶点到其他所有顶点的最短距离,会动态更新
*/
int[] dis;
/**
* @param length 表示顶点的个数
* @param index 出发顶点
*/
public VisitedVertex(int length, int index) {
this.already_arr = new int[length];
this.pre_visited = new int[length];
this.dis = new int[length];
// 初始化dis数组
Arrays.fill(dis, 65535);
// 设置出发顶点被访问过
this.already_arr[index] = 1;
// 设置出发顶点的访问距离为0
this.dis[index] = 0;
}
/**
* 判断index下标对应的顶点是否被访问过
*
* @param index
* @return 如果访问过就返回true
*/
public boolean in(int index) {
return already_arr[index] == 1;
}
/**
* 更新出发顶点到index顶点的距离
*
* @param index
* @param len
*/
public void updateDis(int index, int len) {
dis[index] = len;
}
/**
* 更新顶点pre的前驱为index的顶点
*
* @param pre
* @param index
*/
public void updatePre(int pre, int index) {
pre_visited[pre] = index;
}
/**
* 返回出发顶点到index顶点的距离
*
* @param index
* @return
*/
public int getDis(int index) {
return dis[index];
}
/**
* 继续选择并返回新的未访问的访问顶点
*
* @return
*/
public int updateArr() {
int min = 65535, index = 0;
for (int i = 0; i < already_arr.length; i++) {
// 没有被访问
if (already_arr[i] == 0 && dis[i] < min) {
min = dis[i];
index = i;
}
}
// 标记已访问
already_arr[index] = 1;
return index;
}
}
弗洛伊德算法
也是求最小路径的算法;
效率没有迪杰斯特拉算法快;
计算每个顶点到其他各个顶点的最短路径;
public class FloydAlgorithm {
public static void main(String[] args) {
char[] vertexs = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
final int N = 65535;
int[][] matrix = new int[vertexs.length][vertexs.length];
matrix[0] = new int[]{0, 5, 7, N, N, N, 2};
matrix[1] = new int[]{5, 0, N, 9, N, N, 2};
matrix[2] = new int[]{7, N, 0, N, 8, N, N};
matrix[3] = new int[]{N, 9, N, 0, N, 4, N};
matrix[4] = new int[]{N, N, 8, N, 0, 5, 4};
matrix[5] = new int[]{N, N, N, 4, 5, 0, 6};
matrix[6] = new int[]{2, 3, N, N, 4, 6, 0};
Graph graph = new Graph(vertexs.length, matrix, vertexs);
graph.floyd();
graph.show();
}
}
/**
* 创建图
*/
class Graph {
/**
* 存放顶点的数组
*/
char[] vertex;
/**
* 保存从各个顶点出发,到其他顶点的距离
*/
int[][] dis;
/**
* 保存到达目标顶点的前驱顶点
*/
int[][] pre;
/**
* 构造方法
*
* @param length 多少个顶点
* @param matrix 邻接表
* @param vertex 顶点的数组
*/
public Graph(int length, int[][] matrix, char[] vertex) {
this.vertex = vertex;
this.dis = matrix;
this.pre = new int[length][length];
for (int i = 0; i < length; i++) {
Arrays.fill(pre[i], i);
}
}
/**
* 显示pre和dis数组
*/
public void show() {
for (int k = 0; k < dis.length; k++) {
// 先将pre数组输出
for (int i = 0; i < dis.length; i++) {
System.out.print(vertex[pre[k][i]] + " ");
}
System.out.println();
// 输出dis数组
for (int i = 0; i < dis.length; i++) {
System.out.print("(" + vertex[k] + "到" + vertex[i] + "的最短路径是" + dis[k][i] + ") ");
}
System.out.println();
System.out.println();
}
}
/**
* 弗洛伊德算法
*/
public void floyd() {
// 变量的距离
int len = 0;
// 对中间顶点遍历,k就是中间顶点的下标
for (int k = 0; k < dis.length; k++) {
// 从i顶点开始出发['A','B']
for (int i = 0; i < dis.length; i++) { // 行
for (int j = 0; j < dis.length; j++) {
// 从顶点i出发,经过k中间节点,到达顶点j的距离
len = dis[i][k] + dis[k][j];
if (dis[i][j] > len) {
dis[i][j] = len;
// 前驱顶点
pre[i][j] = pre[k][j];
}
}
}
}
}
}
马踏棋盘算法
也叫骑士周游问题,回溯算法或贪心算法,是图的深度优先搜索的应用;
public class HorseChessBoard {
/**
* 棋盘的列
*/
static int X;
/**
* 棋盘的行
*/
static int Y;
/**
* 根据当前的位置,计算马还能走哪些位置
*
* @param curPoint
* @return
*/
static ArrayList<Point> next(Point curPoint) {
ArrayList<Point> ps = new ArrayList<>();
Point p1 = new Point();
if ((p1.x = curPoint.x - 2) >= 0 && (p1.y = curPoint.y - 1) >= 0) {
ps.add(new Point(p1));
}
if ((p1.x = curPoint.x - 1) >= 0 && (p1.y = curPoint.y - 2) >= 0) {
ps.add(new Point(p1));
}
if ((p1.x = curPoint.x + 1) < X && (p1.y = curPoint.y - 2) >= 0) {
ps.add(new Point(p1));
}
if ((p1.x = curPoint.x + 2) < X && (p1.y = curPoint.y - 1) >= 0) {
ps.add(new Point(p1));
}
if ((p1.x = curPoint.x + 2) < X && (p1.y = curPoint.y + 1) < Y) {
ps.add(new Point(p1));
}
if ((p1.x = curPoint.x + 1) < X && (p1.y = curPoint.y + 2) < Y) {
ps.add(new Point(p1));
}
if ((p1.x = curPoint.x - 1) >= 0 && (p1.y = curPoint.y + 2) < Y) {
ps.add(new Point(p1));
}
if ((p1.x = curPoint.x - 2) >= 0 && (p1.y = curPoint.y + 1) < Y) {
ps.add(new Point(p1));
}
return ps;
}
/**
* 根据当前这一步的所有下一步的选择位置,进行非递减排序
*
* @param ps
*/
static void sort(ArrayList<Point> ps) {
ps.sort(new Comparator<Point>() {
@Override
public int compare(Point o1, Point o2) {
int count1 = next(o1).size();
int count2 = next(o2).size();
return count1 - count2;
}
});
}
/**
* 标记棋盘是否被访问过
*/
static boolean visited[];
/**
* 标记棋盘的所有位置是否都被访问过了
*/
static boolean finished;
/**
* 完成骑士周游问题的算法
*
* @param chessBoard 棋盘
* @param row 马当前的位置,从0开始
* @param column 马当前的位置,从0开始
* @param step 第几步,从1开始
*/
static void traversalChessboard(int[][] chessBoard, int row, int column, int step) {
chessBoard[row][column] = step;
// 标记已访问
visited[row * X + column] = true;
ArrayList<Point> ps = next(new Point(column, row));
// 非递减排序,贪心思想
sort(ps);
while (!ps.isEmpty()) {
// 取出一个可以走的位置
Point p = ps.remove(0);
// 该点未访问
if (!visited[p.y * X + p.x]) {
traversalChessboard(chessBoard, p.y, p.x, step + 1);
}
}
// 1、棋盘还没有走完
// 2、棋盘走完了,但还在回溯
if (step < X * Y && !finished) {
chessBoard[row][column] = 0;
visited[row * X + column] = false;
} else {
finished = true;
}
}
public static void main(String[] args) {
X = 8;
Y = 8;
int row = 1;
int column = 1;
int[][] chessBoard = new int[Y][X];
visited = new boolean[X * Y];
long startTime = System.currentTimeMillis();
traversalChessboard(chessBoard, row - 1, column - 1, 1);
long endTime = System.currentTimeMillis() - startTime;
}
}