1.单图负采样是什么
单图负采样,Unigram Negative Sampling (UNS)是Word2Vec中的一种负采样方法,用于在训练Skip-gram模型时选择负样本。在UNS中,负采样的概率与单词的频率有关,高频词被选为负样本的概率较大,低频词被选为负样本的概率较小。这样可以更好地平衡高频词和低频词在负采样中的权重,提高训练效果。UNS相比于传统的负采样方法,能够更有效地提高训练速度和模型性能。
2.单图负采样解决了什么问题
解决计算效率问题:在传统的训练词向量模型中,通常需要对整个词汇表进行softmax计算,以确定目标词与上下文词的关系。这样的计算复杂度随着词汇表规模的增加而呈指数级增长,导致训练过程变得非常耗时。UNS 通过负采样的方式,显著降低了计算成本,使得训练过程更加高效。
改善词向量的质量:UNS 通过负采样的方式,可以更好地学习词向量,特别是针对频率较低的词汇,以及更好地捕捉词汇之间的语义关系。这有助于提高词向量的质量,并且可以更好地应用于自然语言处理任务中,如文本分类、情感分析和推荐系统等。
3.UNS计算过程
在 UNS 中,负采样的概率与单词的频率有关。具体来说,对于一个单词 w,其被选择为负样本的概率计算如下:
其中 代表单词
的频率,
代表词汇表的大小。这个公式中的
是为了降低高频词被选中的概率,使得低频词有更大的机会被选为负样本。
在实际应用中,进行采样时可以根据上面的概率分布进行抽样,从而选择负样本。这样,相比于传统的负采样方法,UNS 能够更好地平衡高频词和低频词在负采样中的权重,提高模型的训练效果。