通俗理解条件概率、条件期望、条件方差

文章详细解释了条件概率的推导性定义和一般定义,强调在给定条件下将其他因素视为背景。通过班级平均分的例子阐述了条件期望的概念,展示了如何计算不同群体的平均分,并指出总体期望是部分条件期望的期望。此外,还探讨了条件方差,将其分解为组内方差和组间方差,说明总的方差等于这两部分之和。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写在前面:求“条件XX”时,对“条件”的理解可以是,把“XX条件”作为新的基本事件空间/总体看待,而忽略除这个条件以外的。类似于用摄像机照相时,一开始是整个画面,当得到“XX条件”的约束后,镜头聚焦,画面缩小至代表那个条件的小空间上。


一、条件概率

  1. 推导性定义

条件概率是通过样本点数目之比定义的,分子是事件“AB同时发生”的样本点数,分母是事件“A发生”的样本点数。然后上下同除以总的样本点数,再利用“频率的稳定值是概率”的知识,得到上下都是概率的除式。

2、一般定义

(注:)表示的是在随机事件A发生的条件下,随机事件B发生的概率。

理解

①分子:已知A发生,在此条件下B发生,也就是A、B同时发生了;

②分母:将条件“A发生”作为新的基本事件空间

二、条件期望与条件方差

此处举2个例子。

1、第一个例子

一个年级有两个班,分别是A班和B班,A班有3人,三人的分数分别为,B班有4人,四人的分数分别为。那么:

期望

①A班的班级平均分为,这是A班的条件期望 E(分数,班级=A班)。

②B班的班级平均分为,这是B班的条件期望 E(分数,班级=B班)。

③年级总的平均分为,这是总体的期望,此处体现了加权平均的思想。也对应一句话——总体的期望是部分条件期望的期望。

2、第二个例子

一个年级有r个班,记每个班的学生人数分别为、...、,把符号 定义为第i个班的第j名同学的成绩。那么:

这个年级的总人数为

期望

这个年级总的平均分为,表示将每位同学的成绩都加起来,再除以总人数。继续算下去,。即将分母的n纳进第一个求和号里,乘以,并再第二个求和号里除以。如此,第一个求和号表示每个班级人数占全年级人数的比例(加权平均的权),第二个求和号表示每个班级的平均分数。体现了——总体的期望是部分条件期望的期望。

方差

这个年级总的方差为,表示每个同学的成绩与总平均成绩的相减……继续算下去:,加一项减一项。将平方和展开,得到,将求和移到括号内,得到三个部分:(此处的分解与方差分析紧密相关,或者说如出一辙)

①第一部分:,表示每个班级的内部方差(组内方差);

②第二部分:,表示组间方差;

③第三部分:,因为与j无关,提到前面,即,只看后半部分,,因此第三部分等于0.

至此,说明总的方差=组内方差(部分条件方差的期望)+组间方差(部分条件期望的方差)


写在最后:本文是根据上课时老师的举例整理下来的,对课本上常见的公式定义没有过多涉及,只是希望通过例子帮助加深理解。如有错误,请告知,感谢。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值