实验设计第四讲 单因素优选法

本文介绍了单因素优选法的概念,强调在实验中寻找影响指标的最大因子,并探讨了目标函数的不同形式。接着,详细阐述了四种常见的单因素实验设计方法:均分法、对分法、黄金分割法和分数法,包括各自的适用条件、特点和优势。对分法适用于单调函数,黄金分割法利用0.618比例快速逼近最优,而分数法则依据斐波那契数列安排实验。此外,还提到了分批实验法在实验成本高昂情况下的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、概念

1、单因素优选法

是指在安排实验时,影响实验指标的因素只有一个。或者是虽然实验指标的因素有多个,但是只考虑一个影响程度最大的因子,而让其余因素固定在理论或经验上的最优水平保持不变。实验目的就是在一个可能包含最优点的实验范围[a,b]内寻求这个因素的最优取值,以得到优化的实验目标。

2、目标函数

就是度量实验指标的一元函数,可能是单调上升函数、单调下降函数、单峰函数、多峰函数等形式。

转化为单峰函数的方法一般有:减去一个数后取绝对值、以增加值作为实验指标等

二、单因素实验设计方法

(一)均分法

特点:①在实验范围[a,b]内等间隔安排实验点。

②能在对目标函数没有先验认识的场合(y与x的关系未知)下作为了解目标函数的前期工作,也可以确定有效的实验范围。

使用条件:目标函数是单峰函数。

使用技巧:考虑实验成本(比如时间限制)的前提下,尽量通过区组化设计实现批量实验(整体设计),即让各个实验点对应的处理同时进行,“一次过”,从而降低实验成本。

(二)对分法(等分法、平分法)

使用条件:①目标函数是单调函数。

②要求是序贯实验,只有在每一次实验后再确定下一次实验的位置。

举例:比如查找地下输电线路的故障、排水管道的堵塞位置等。

特点:每次实验都可以把查找目标的范围减小一半,通过n次实验就可以把目标范围锁定在长度为\frac{b-a}{2^{n}}的范围内,效率高

(三)黄金分割法(0.618法)

使用条件:①在实验范围内目标函数为单峰

②实验因素水平方便精确度量

特点:①每次在实验范围内选取0.382和0.618这两个对称点做实验。

②来回调试,总是舍弃两端选取中间,不断逼近最优。

③第一步需要做两个实验,以后每步只需要再做一个实验。

④经过n步实验后保留的实验范围至多是最初的0.618^{n}倍。

⑤是连续化的斐波那契法。

(四)分数法(斐波那契法)

原理:利用斐波那契(Fibonacci)数列安排实验,数列如下图:

使用条件:①目标函数为单峰

②实验次数预先给定,因素水平数目仅取整数值或有限个值时更适用。如果因素水平m恰好是某个斐波那契数,就利用那个斐波那契数;如果因素水平数目不是斐波那契数,往往需要增加几个虚拟水平,即选取比其大的最近的一个斐波那契数。

(五)分批实验法

使用条件:单个实验需要很长时间、成本很大。

优点:①预想实验结果,将实验步骤合并,让多个实验同时进行。

②可以在只增加1/3的实验次数时把实验周期减少一半。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值