AAEGan 简介与代码实战

1.介绍
  AAE的全名是对抗自动编码器(Adversarial Autoencoders),很明显,它是结合了gan的思想和自动编码器的思想, 更加详细的内容参见论文:Adversarial Autoencoders

 
2.模型结构
  图片上部分为自动编码器结构,包括两大部分,编码结构(encoder)和解码结构(decoder),下部分为判别器,目的就是使得q(z | x) 不断向p(z)(固定噪声分布,比如高斯分布)靠近

3.模型特点

      结合gan和自动编码器,个人觉得创新点不是很大,就是一个简单的结合

 4.代码实现keras

class AdversarialAutoencoder():
    def __init__(self):
        self.img_rows = 28
        self.img_cols = 28
        self.channels = 1
        self.img_shape = (self.img_rows, self.img_cols, self.channels)
        self.latent_dim = 10
 
        optimizer = Adam(0.0002, 0.5)
 
        # Build and compile the discriminator
        self.discriminator = self.build_discriminator()
        self.discriminator.compile(loss='binary_crossentropy',
            optimizer=optimizer,
            metrics=['accuracy'])
 
        # Build the encoder / decoder
        self.encoder = self.build_encoder()
        self.decoder = self.build_decoder()
 
        img = Input(shape=self.img_shape)
        # The generator takes the image, encodes it and reconstructs it
        # from the encoding
        encoded_repr = self.encoder(img)
        reconstructed_img = self.decoder(encoded_repr)
 
        # For the adversarial_autoencoder model we will only train the generator
        self.discriminator.trainable = False
 
        # The discriminator determines validity of the encoding
        validity = self.discriminator(encoded_repr)
 
        # The adversarial_autoencoder model  (stacked generator and discriminator)
        self.adversarial_autoencoder = Model(img, [reconstructed_img, validity])
        self.adversarial_autoencoder.compile(loss=['mse', 'binary_crossentropy'],
            loss_weights=[0.999, 0.001],
            optimizer=optimizer)
 
 
    def build_encoder(self):
        # Encoder
 
        img = Input(shape=self.img_shape)
 
        h = Flatten()(img)
        h = Dense(512)(h)
        h = LeakyReLU(alpha=0.2)(h)
        h = Dense(512)(h)
        h = LeakyReLU(alpha=0.2)(h)
        mu = Dense(self.latent_dim)(h)
        log_var = Dense(self.latent_dim)(h)
        latent_repr = merge([mu, log_var],
                mode=lambda p: p[0] + K.random_normal(K.shape(p[0])) * K.exp(p[1] / 2),
                output_shape=lambda p: p[0])
 
        return Model(img, latent_repr)
 
    def build_decoder(self):
 
        model = Sequential()
 
        model.add(Dense(512, input_dim=self.latent_dim))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dense(512))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dense(np.prod(self.img_shape), activation='tanh'))
        model.add(Reshape(self.img_shape))
 
        model.summary()
 
        z = Input(shape=(self.latent_dim,))
        img = model(z)
 
        return Model(z, img)
 
    def build_discriminator(self):
 
        model = Sequential()
 
        model.add(Dense(512, input_dim=self.latent_dim))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dense(256))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dense(1, activation="sigmoid"))
        model.summary()
 
        encoded_repr = Input(shape=(self.latent_dim, ))
        validity = model(encoded_repr)
 
        return Model(encoded_repr, validity)
 
    def train(self, epochs, batch_size=128, sample_interval=50):
 
        # Load the dataset
        (X_train, _), (_, _) = mnist.load_data()
 
        # Rescale -1 to 1
        X_train = (X_train.astype(np.float32) - 127.5) / 127.5
        X_train = np.expand_dims(X_train, axis=3)
 
        # Adversarial ground truths
        valid = np.ones((batch_size, 1))
        fake = np.zeros((batch_size, 1))
 
        for epoch in range(epochs):
 
            # ---------------------
            #  Train Discriminator
            # ---------------------
 
            # Select a random batch of images
            idx = np.random.randint(0, X_train.shape[0], batch_size)
            imgs = X_train[idx]
 
            latent_fake = self.encoder.predict(imgs)
            latent_real = np.random.normal(size=(batch_size, self.latent_dim))
 
            # Train the discriminator
            d_loss_real = self.discriminator.train_on_batch(latent_real, valid)
            d_loss_fake = self.discriminator.train_on_batch(latent_fake, fake)
            d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
 
            # ---------------------
            #  Train Generator
            # ---------------------
 
            # Train the generator
            g_loss = self.adversarial_autoencoder.train_on_batch(imgs, [imgs, valid])
 
            # Plot the progress
            print ("%d [D loss: %f, acc: %.2f%%] [G loss: %f, mse: %f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss[0], g_loss[1]))
 
            # If at save interval => save generated image samples
            if epoch % sample_interval == 0:
                self.sample_images(epoch)
 
    def sample_images(self, epoch):
        r, c = 5, 5
 
        z = np.random.normal(size=(r*c, self.latent_dim))
        gen_imgs = self.decoder.predict(z)
 
        gen_imgs = 0.5 * gen_imgs + 0.5
 
        fig, axs = plt.subplots(r, c)
        cnt = 0
        for i in range(r):
            for j in range(c):
                axs[i,j].imshow(gen_imgs[cnt, :,:,0], cmap='gray')
                axs[i,j].axis('off')
                cnt += 1
        fig.savefig("images/mnist_%d.png" % epoch)
        plt.close()

 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值