- 博客(37)
- 收藏
- 关注
原创 深入声音分析:MATLAB实现的全面指南
声音无处不在,它不仅是我们沟通的方式,也是我们理解周围世界的重要工具。在工程和科学研究中,对声音信号的分析至关重要。MATLAB作为一种强大的数学软件,提供了一套全面的分析工具,可以帮助我们深入理解声音信号的特性。本文将通过一个实际的MATLAB脚本,介绍如何进行声音信号的基本分析。
2024-09-15 17:42:27 644
原创 探索信号处理:使用傅里叶小波变换分析和恢复信号
傅里叶小波变换是一种时频分析工具,它通过将信号投影到不同频率和时间的小波上,来分析信号的频率成分如何随时间变化。这种变换特别适合于分析那些频率成分随时间显著变化的非平稳信号。
2024-09-15 17:06:15 879
原创 联合谱低秩先验和深度空间先验的高光谱图像无监督去噪
Cooperated Spectral Low-Rankness Prior and Deep Spatial Prior for HSI Unsupervised Denoising》这篇论文为高光谱图像的无监督去噪提供了一种新的方法,通过结合谱低秩先验和深度空间先验,能够有效地去除噪声并恢复图像质量。这种方法不仅在理论上具有创新性,而且在实际应用中展现了优异的性能。随着高光谱成像技术的发展,这种基于先进去噪技术的方法将有望在更多领域中得到应用和推广。
2024-09-12 11:30:28 759
原创 使用稀疏和低秩分解的汉克尔结构矩阵进行脉冲噪声去除
Sparse and Low-Rank Decomposition of a Hankel Structured Matrix for Impulse Noise Removal》这篇论文为脉冲噪声去除提供了一种新的方法,通过稀疏和低秩分解的技术,可以有效地从含噪信号中分离出噪声部分。这种方法不仅具有理论上的创新,而且在实际应用中也展示了优良的性能。随着数据处理技术的不断发展,这种基于汉克尔矩阵的去噪方法将有望在更多领域中得到应用和推广。
2024-09-12 11:24:03 709
原创 图像去噪的艺术:自适应中值滤波器的应用与实践
在数字图像处理的众多挑战中,噪声的去除是一个永恒的话题。特别是椒盐噪声,因其随机将像素点变为极黑或极白,对图像的视觉质量破坏极大。本文将通过MATLAB实现的自适应中值滤波器(AMF),探讨其在图像去噪中的实际应用和效果。
2024-09-11 09:00:30 734
原创 深入探索:自适应中值滤波器在图像去噪中的应用
在数字图像处理领域,噪声是影响图像质量的重要因素之一。椒盐噪声,作为常见的一种噪声,会在图像中随机产生过度黑或过度白的像素,严重影响图像的视觉质量。为了有效去除这类噪声,自适应中值滤波器(AMF)提供了一种有效的解决方案。本文将通过MATLAB实现的自适应中值滤波器,探讨其在图像去噪中的实际应用和效果。
2024-09-11 08:56:46 942
原创 探索图像去噪:局部最优滤波器的三种变体
图像去噪是数字图像处理中的一项基础且关键的任务,尤其是在处理椒盐噪声时。局部最优滤波器(VMF)是一种有效的去噪技术,它通过考虑像素邻域内的统计特性来恢复图像。本文将介绍三种基于局部最优原则的滤波器变体,并展示它们在处理椒盐噪声时的效果。
2024-09-10 08:52:01 592
原创 图像去噪新视角:局部鲁棒最优去噪滤波器(LROD-VMF)
在数字图像处理领域,椒盐噪声是一种常见的干扰,它会导致图像出现随机的黑点和白点,严重影响图像质量。传统的去噪方法,如中值滤波和高斯滤波,虽然能在一定程度上减少噪声,但往往无法有效保护图像的边缘和细节信息。为了解决这一问题,本文将介绍一种基于局部鲁棒最优去噪滤波器(LROD-VMF)的方法,它能够有效去除椒盐噪声,同时保持图像的细节。
2024-09-10 08:42:37 429
原创 自适应中值滤波器:图像去噪的高效解决方案
在数字图像处理中,椒盐噪声是常见的干扰之一,它会导致图像出现随机的黑点和白点,严重影响图像质量。传统的中值滤波器虽然在一定程度上能够去除这种噪声,但可能无法完全恢复图像的细节。为此,本文将介绍一种自适应中值滤波器,它能够更有效地处理椒盐噪声,同时保持图像的细节。
2024-09-09 19:37:35 876
原创 图像去噪技术:传统中值滤波与改进中值滤波算法的比较
在数字图像处理中,去噪是一个至关重要的步骤,尤其是在图像受到椒盐噪声影响时。本文将介绍一种改进的中值滤波算法,并与传统的中值滤波算法进行比较,以展示其在去除椒盐噪声方面的有效性。
2024-09-09 19:33:40 346
原创 探索非局部均值滤波在椒盐噪声去除中的应用
在图像处理领域,椒盐噪声是一种常见的干扰,它会导致图像出现随机的黑白像素点,严重影响图像质量。为了解决这一问题,本文将介绍一种有效的去噪技术——非局部均值滤波(NLM)的改进版本,即NAMF(Non-Local Means Filter),并展示其在不同噪声密度下的性能。
2024-09-08 10:59:15 482
原创 图像去噪算法性能比较与分析
在数字图像处理领域,去噪是一个重要且常见的任务。本文将介绍一种实验,通过MATLAB实现多种去噪算法,并比较它们的性能。实验中使用了包括中值滤波(MF)、自适应加权中值滤波(ACWMF)、差分同态算法(DBA)、非线性均值滤波(NAFSM)、非线性中值滤波(NASEPF)和非线性局部均值滤波(NASNLM)在内的六种算法。
2024-09-08 10:50:15 841
原创 图像去噪技术:自适应均值滤波器(ACmF)
椒盐噪声是一种常见的噪声类型,它随机地将像素值改变为最小值或最大值,严重影响图像的视觉效果。为了解决这一问题,我们开发了一种自适应均值滤波器(ACmF),它能够有效地去除椒盐噪声,同时保留图像的重要细节。ACmF算法是一种基于局部像素值的自适应去噪方法。它通过分析图像的局部区域,对噪声像素进行智能处理,以恢复图像的原始信息。算法的核心思想是,如果一个像素的周围存在噪声,那么它将被其周围非噪声像素的平均值所替代。ACmF算法在去除椒盐噪声方面表现出色,能够有效地恢复图像的原始细节,同时保持图像质量。
2024-09-07 09:05:39 474
原创 图像去噪:使用DAMRmF算法
DAMRmF(Directional Adaptive Median Filter)是一种基于中值滤波的去噪算法,它通过考虑像素的局部方向性来改善去噪效果。这种算法特别适合去除椒盐噪声,同时保持图像的细节。
2024-09-07 08:59:43 361
原创 利用全核范数去噪技术优化彩色图像处理
图像去噪是图像处理领域中一个经典且重要的问题。随着技术的发展,各种算法不断涌现,其中全变分(Total Variation, TV)方法因其在边缘保持方面的优势而广受欢迎。本文将介绍一种基于全核范数(Total Nuclear Norm, TNN)的去噪技术,该技术在处理彩色图像时表现出色。
2024-09-06 09:15:43 1148
原创 利用各向同性全变分进行图像去噪
在图像处理领域,去噪是一个永恒的话题。随着技术的发展,各种算法层出不穷,其中全变分(Total Variation, TV)方法因其在保持边缘信息方面的优势而备受青睐。本文将介绍一个基于Laurent Condat算法改进的图像去噪方法,该方法利用各向同性全变分对图像进行去噪处理。
2024-09-06 09:09:36 419
原创 图像去噪:基于混合噪声处理的 UNF 滤波器与中值滤波器比较
在本文中,我们通过 MATLAB 实现了对图像的混合噪声处理,并使用 UNF 滤波器和中值滤波器对噪声图像进行了去噪处理。从结果可以看出,UNF 滤波器在去除脉冲噪声和高斯噪声的同时,能够较好地保留图像的边缘细节,而中值滤波器在某些情况下可能会使图像变得模糊。我们可以通过 PSNR 值进一步验证 UNF 滤波器的优势。
2024-09-05 08:54:57 412
原创 基于自适应中值滤波器的图像去噪处理
通过上述步骤,我们实现了基于自适应中值滤波器的图像去噪处理。自适应中值滤波器通过调整窗口大小来处理椒盐噪声,能够有效地保留图像的边缘和细节,同时去除噪声点。该方法适用于噪声点较多、且边缘保留要求较高的图像去噪场景。
2024-09-05 08:44:18 605
原创 探索非局部均值滤波器:图像去噪的三种实现
本文从两个方面对 NLM 进行了重新审视,具体如下:1. 为缓解 NLM 计算复杂度高的问题,构建了一种基于互相关和快速傅里叶变换的快速算法;2. 在去除杂色过程中,NLM 始终会模糊结构和纹理,尤其是在杂色较强的情况下。数值实验表明,快速算法比具有标准参数配置的经典实现快 27 倍,并且 ANLM 在 PSNR 和视觉效果方面都优于经典 NLM。本文将通过Matlab代码示例,对比三种NLM的实现方法:经典的NLM实现、快速NLM(FNLM)和渐近NLM(ANLM),以展示它们在图像去噪任务中的表现。
2024-09-04 09:28:03 550
原创 图像去噪实验:基于全变分(TV)模型的MATLAB实现
全变分模型在图像处理领域中被广泛用于去除噪声,同时保持图像边缘的清晰度。图像的读取、噪声添加、去噪处理以及结果的显示。
2024-09-04 09:08:37 540
原创 8-PSK调制解调及同步算法仿真
本实验完成了8-psk系统从生成比特数据流、映射、调频、发射到接收端滤波、混频、匹配、同步、最终解调解映射,初步涵盖了一个通信系统一般应具有的各个部分。通信中的信号处理实验报告。
2024-09-03 15:20:33 392
原创 对调制信号进行正交分解、滤波、抽取、解调
对调制信号进行正交分解和滤波,使用 CIC 滤波器设计分布式滤波器系数,并绘制其幅频响应。设计和应用半带 (HB) 滤波器和有限冲激响应 (FIR) 滤波器,并展示频率响应。生成基带信号,并将其调制到一个较高的载频上。通过滤波和抽取操作处理信号,完成解调过程。检查处理后 I 和 Q 分量的正交性。三、HB 滤波器与 FIR 滤波器设计。二、CIC 滤波器设计与频率响应。
2024-09-03 11:37:45 405
原创 MATLAB 仿真跳频扩频通信系统
跳频扩频(FHSS)是一种通过在不同的频率之间快速切换来对抗窄带干扰的技术。在这篇博客中,我们将使用 MATLAB 进行 FHSS 通信系统的仿真,模拟跳频过程、调制、解调以及信号在不同步骤中的变化。通过对仿真结果进行可视化,我们可以更好地理解跳频扩频通信系统的工作原理和性能。通过 MATLAB 仿真,我们成功地模拟了一个完整的跳频扩频通信系统。该系统展示了跳频技术如何通过频率的快速变化来对抗干扰和窃听,并展示了各个阶段的信号特征。这种技术在无线通信领域中具有广泛的应用前景。
2024-09-02 10:37:07 1108
原创 MATLAB实现跳频多频移键控通信系统仿真
在现代无线通信系统中,跳频技术和多频移键控(MFSK)调制被广泛应用于抗干扰和提高通信系统性能。本文将通过 MATLAB 仿真分析跳频 MFSK 通信系统的性能,特别是在不同信道干扰条件下的误码率(BER)表现。我们将介绍仿真的关键步骤,包括信号参数设置、调制解调流程、干扰建模以及性能评估。
2024-09-02 10:21:24 546
原创 基于数字图像技术的露石混凝土表面构造研究
EACCP 特有的露石表面 构造,能有效改善水泥混凝土路面的抗滑性能,显著 降低行车噪声,粗糙的露石表面还具有很好的防眩 作用,有利于安全行车。表面 构造是评价路面抗滑性能的重要指标,露石面层表 面构造的质量取决于面层表面构造深度、露石分布 均匀程度,显著影响 EACCP 高抗滑低噪声性能。笔者利用常规设备( 如数码相机) 采集 EACCP 露石 表面数字图像,运用数字图像技术对其图像信息进 行处理,计算露石表面构造深度值,分析评价 EACCP 露石表面性能。
2024-09-01 15:13:18 394
原创 Alpha稳定分布噪声下通信信号参数估计
二、 Alpha稳定分布噪声抑制方法。一、通信信号参数估计方法。四、咸鱼(潦草通信狗)三、 具体抑制方法实现。
2024-08-29 09:08:38 240
原创 MIMO OFDM 中 PAPR 的 k-Modular 二次规划算法
用于 MIMO-OFDM 的替代峰均功率比 (PAPR) 缩减框架 基于著名的 unimodular quadratic 的系统 编程 (UQP)。此外,我们考虑更一般的 MIMO-OFDM 系统中 PAPR 减少问题的设置 并提出一种新的类似幂法的算法,以有效地 处理相关的 UQP。所提方法可以处理 任意峰均功率比 (PAPR) 约束 传输序列,更重要的是,可用于 为此类系统生成恒定模量信号。运行代码并查看 k-MQP 的性能,运行文件。要查看 BER,请运行文件。
2024-08-29 08:43:25 159
原创 通信信号调制类型自动识别技术研究
'调制方式' = '2ASK','2FSK','2PSK','4ASK','4FSK','4PSK'提取信号的瞬时幅度、瞬时相位等相关参数,然后通过BP神经网络实现信号自动识别。
2024-08-28 08:50:48 259
原创 脉冲噪声条件下BPSK信号的分数低阶循环谱
然而,在某些情况下,通信系统既存在高斯噪声,也存在具有脉冲特性的非高斯噪声,例如具有短和突发分组(低占空比)的移动通信系统的多址干扰、雷达杂波和水 下信号检测中的噪声。在水声通信系统中,由于人类活动、海洋环境、海洋生物活动等因素 的影响,水声信道往往会产生大量的脉冲噪声,如 船只引擎等机械设备的运作,海啸、地震等地理事件,海洋生物游动的声音都可能在水声通信中引入额外的噪声。在电力线通信( PLC)系统中,电磁噪声是由电网中的开关 暂态引起的,噪声持续时间短,随机发生,功率谱密 度高。脉冲噪声概率密度函数。
2024-08-27 09:03:30 371
原创 数字调制信号识别
(2)sigdp:零中心非弱信号段瞬时相位非线性分量的标准偏差,区分含直接相位调制信息的信号和不含直接相位调制信息的信号。(1)将信号分成两类:幅度变化AM、DSB、ASK、USB、LSB和非幅度调制FSK、PSK、FM,门限为10。(2)将信号分成两类:不含相位调制信号AM、ASK和含相位信号DSB、USB、LSB,门限为0.7。(4)将信号分成三类:LSB(对称性接近于1)和USB(对称性接近于-1),门限为-0.3。(3)将信号分为两类:DSB和USB、LSB(经过变换有绝对相位),门限0.5。
2024-08-27 08:46:46 468
原创 图像噪声去除
稳定分布噪声(此类噪声在通信系统里常用对脉冲噪声建模)注: 针对脉冲噪声这类噪声的建模,还有一些论文采用。两种非高斯噪声的图像去噪算法研究。二、常见噪声去噪方法。
2024-08-26 15:31:11 473
原创 超大杯全视角海景房! 天花板硬件首选“储藏间“——追风者NV9分体水冷沉浸式装机
固态:三星 990 PRO 2T PCI-E 4.0 M.2 *2。内存:芝奇 48G DDR5 8000频 24G*2 幻锋戟。CPU:INTEL I9-14900KS 24核32线程。散热器:BRO私人PC定制分体式水冷系统 BRO+EK。主板:华硕 ROG Z790 APEX ENCORE。显卡:华硕 骇客 RTX4090 P24G 改装分体。电源:海韵 TX1600W ATX3.0 钛金全模组。风扇:追风者 D30 14CM ARGB 黑色*9把。机箱:追风者 NV9 黑色 海景房。
2024-08-26 15:16:53 340
原创 六千元台式机性价比配置
电源:全汉HV PRO 650W 铜牌 雪装版 ATX3.0。散热:九州风神 玄冰400 V5 ARGB 白色。显卡:耕升RTX4060TI 星极皓月 8G。机箱:航嘉S920 暴风雪 白色 全景版。内存:金百达 银爵 3600 8Gx2。硬盘:西部数据SN580 1T。主板:铭瑄B760M 终结者。
2024-08-25 11:39:59 448
原创 如何高效记录并整理编程学习笔记?
在编程学习的海洋中,高效的笔记记录和整理方法就像一张珍贵的航海图,能够帮助我们在浩瀚的知识中找到方向。如何建立一个既能快速记录又易于回顾的笔记系统?如何在繁忙的学习中保持笔记的条理性?让我们一起探讨如何打造属于自己的编程学习“知识宝库”!提示:讨论如何将笔记与编程实践相结合,以及如何设计有效的复习策略,确保知识的长期记忆。提示:探讨如何设计一个清晰、有逻辑的笔记结构,包括如何分类、标签化、建立知识关联等。提示:介绍适合编程学习的各类笔记工具,分析它们的优缺点及适用场景。方向一:笔记工具选择。
2024-08-25 11:20:03 260
为了模拟整个 OFDM 系统,创建了一个 Matlab 用户界面
2024-08-30
这是 MATLAB 中基于 OFDM 的发射机的实现
2024-08-30
模拟具有不同功能的 OFDM 传输,例如 1) 在频率选择信道上实施 OFDM 链 2) 具有比特和功率分配的自适应调制 3)
2024-08-30
在 OFDM-4QAM 通信系统中应用不同信道估计方法的项目
2024-08-30
用于计算 AWGN、Rice 和 Rayleigh 衰落信道中 BPSK、QPSK、4-QAM、8-QAM 和 16-QAM /
2024-08-30
MATLAB OFDM 通信系统设计
2024-08-30
用于船舶互联网的基于 CNN 的信道估计
2024-08-30
带 ML 均衡器的 OFDM 模拟器
2024-08-30
面向 Teleco 学生的 MATLAB 中的 OFDM 仿真
2024-08-30
基于 线性预测的 SIMO-OFDM 中串联 DQPSK 检测
2024-08-30
在频域中使用导频对 OFDM 系统进行基于 FFT 的信道估计
2024-08-30
包括 DVB-T 系统中 OFDM 的 OFDM 设计和性能
2024-08-30
ACO-OFDM-CE-Syn-paper
2024-08-30
一个简单的 IEEE 802.11ax OFDMA 下行链路调度器模拟器
2024-08-30
主要目标是基于 4G/5G 信号的 OFDM 峰均功率比 (PAPR) 降低
2024-08-30
使用 Intel-DE2i-150-FPGA 板实现 CDMA 发射器和接收器
2024-08-30
Python 中 OFDM 发射器和接收器的实现
2024-08-30
在时域中使用前导码对 OFDM 系统进行基于最小二乘的信道估计
2024-08-30
OFDM 的系统仿真程序
2024-08-30
采用深度学习驱动方法的端到端 OFDM 系统
2024-08-30
使用 Android Watch 通过声学令牌解锁 Android 手机
2024-08-30
用于无人机和航空航天的开源低延迟 OFDM 数据通信链路
2024-08-30
用于模拟和仿真的 .grc 文件 -用于 SNR 和 BER 计算的 .m 文件
2024-08-30
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人