AI绘画:超全Stable Diffusion详解之四 图片修复

经常遇到奇形怪状的手指?在为生成平铺图烦恼?生成的图片不够清晰这么办?

本文主要讲SD的三个小功能来解决它们,功能是面部修复、平铺图 (Tiling)、高分辨率修复 (Hires. fix)。

一、面部修复

面部修复的效果图对比(Face Editor):

img

而SD内置的面部修复,效果可能不是很明显,其中真人的要变得稍微自然一点(也没有过于改进),但是动漫风格的反而变得模糊了,所以面部修复一般是不建议用在非写实的图片生成上。

这里推荐使用after detailer,不但修复面部,还能修复手的相关问题。

参考文章:https://stable-diffusion-art.com/adetailer/,/adetailer

推荐国内插件地址:https://gitee.com/luodiao/adetailer

再推荐一款插件:Face Editor

插件地址:https://github.com/ototadana/sd-face-editor.git

国内地址:https://gitee.com/mirrord/sd-face-editor

二、平铺图 (Tiling)

该功能是生成一个可以拼接的图案,该图案是可以随意拼接的(如同铺地一样的瓷砖组合平铺的比较自然)。

比如生成一朵花,勾上复选框【平铺图】,生成一张平铺图,手动复制一模一样的四个拼合在一起:

img

图2-2 平铺图的拼接(自制)

可见非常的自然,很适合用于设计装修领域。

三、高分辨率修复 (Hires. fix)

img

图3-1 高分辨率修复一览

Hires.fix是一个很有用的选项,用于以较低分辨率部分渲染图像,放大图像,然后以较高分辨率添加更多细节。(实质上是将【后期处理】中的Upscale功能放在文生图这里了)

参考文档:www.reddit.com/r/StableDiffusion/comments/y2mrc2/the_definitive_comparison_to_upscalers/usion/comments/y2mrc2/the_definitive_comparison_to_upscalers/

3.1 基本选项的解释

放大倍数:这个放大到多少和底膜有很多关系,放大到1280之后图像就很容易出问题。倍数太大建议用controlnet,后期处理等选项进行绘制

高分迭代步数:它是提高分辨率时的步数,如果设置为0,将应用与采样步数相同的值。通常保留为“0”或小于采样步数的值即可。

重绘幅度(Denoising strength):指一张图在开始图生图时要加上多少噪点。0代表完全不加噪点,等于完全不重画。1代表整张图被随机噪点完全取代,会产生完全不相关的图。通常在0.5时会造成很显著的颜色光影改变,0.75时连结构跟人物姿态都会有很明显的变动。

3.2 各种放大算法的解释:

Latent算法:这是一种基于潜空间的放大算法,各种Latent算法可在潜在空间中缩放图像。它是在文本到图像生成的采样步骤之后完成的,该过程类似于图像到图像。

(1)好处:不会出现其他升级器(如ESRGAN)可能引入的升级伪影(upscaling artifacts)。因为它的原理就是和stable diffusion一致的,相同的解码器生成图像,确保风格一致。

(2)缺点:它会在一定程度上改变图像,具体取决于去噪强度(Denoising strength,也可以称重绘幅度)的值。往往去噪强度必须高于0.5。否则,你会得到模糊的图像,如下图所示:

img

图3-2 Latent算法搭配不同的去噪强度(自制)

非latent算法:一般分为两种,一是基于传统算法(traditional upscaler),一种是基于较优的识别算法(AI upscaler)。

(1)传统的算法以Lanczos、近邻差值、ScuNET这些为主。

(2)AI upscaler以R-ESRGAN、BSRGAN、LDSR这些为主,它能够填补缺失的信息,关注几个关键特征,然后进行补充。它可以放大图像并同时恢复细节,变得比传统放大算法的更加清晰。

3.3 总结与建议

相片类:LDSR(但速度很慢),或者ESRGAN_4x(如果你想要超级清晰的细节和/或速度),或者BSRGAN(好)。

绘画类:ESRGAN_4x提供高油漆纹理和细节,General-WDN提供更好的整体外观。

动漫类:Anime6B,也适合将某些东西变成动画。

除了latent算法0.5以下的重绘幅度不清晰外,其他差距很少。

参考文章:https://zhuanlan.zhihu.com/p/649749094

如果你想了解更多关于SD的知识,请看历史文章:

AI绘画:超全Stable Diffusion详解之三 生成快捷键、迭代步数、采样方法

AI绘画:超全Stable Diffusion详解之二 提示词

[AI绘画:超全Stable Diffusion详解之一 基础模型和外挂VAE模型]

AIGC所有方向的学习路线思维导图

这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。如果下面这个学习路线能帮助大家将AI利用到自身工作上去,那么我的使命也就完成了:
在这里插入图片描述

AIGC工具库

AIGC工具库是一个利用人工智能技术来生成应用程序的代码和内容的工具集合,通过使用AIGC工具库,能更加快速,准确的辅助我们学习AIGC
在这里插入图片描述

有需要的朋友,可以点击下方卡片免费领取!

精品AIGC学习书籍手册

书籍阅读永不过时,阅读AIGC经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验,结合自身案例融会贯通。

在这里插入图片描述

AI绘画视频合集

我们在学习的时候,往往书籍源码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,科学有趣才能更方便的学习下去。

在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值