AI基础设施转型:如何构建高效可靠的AI基础设施

摘要:AI的快速发展对数据存储提出了前所未有的挑战,要求海量数据和高性能存储。企业需构建高效、可靠的存储基础设施,如全闪存存储、数据湖等,以满足AI的需求。同时,还需应对数据安全、隐私保护和成本控制等问题。IT团队在有限资源下必须平衡性能、扩展性、安全性和简便性。选择适合业务特点的存储解决方案对加速AI项目落地和提高数据管理效率至关重要,这也是企业应对AI时代的核心任务之一。

概述

AI正以前所未有的速度渗透各行各业,其潜力已毋庸置疑。众多组织将其视为提升竞争力的关键,纷纷加大对AI的投入。

然而,AI的价值实现并非一蹴而就。组织需要仔细评估资源需求,尤其是如何有效管理信息资产。随着AI应用的深入,企业面临着将宝贵数据高效引入AI模型的挑战。如何平衡数据访问与安全,如何满足AI环境的独特需求,成为组织IT团队亟待解决的问题。

云端AI开发的便捷性与企业对数据主权的重视形成了鲜明对比。企业IT部门必须为AI团队提供本地开发环境,这无疑增加了IT部门的工作复杂性。如何在有限的资源下,为AI团队构建高效、可靠的基础设施,成为IT部门面临的新课题。

要满足不断增长的AI需求,选择合适的技术至关重要。除了强大的计算资源和AI工具,高效、可扩展的存储解决方案更是重中之重。这不仅能加速模型训练,降低成本,还能显著提升数据科学家的工作效率。IT部门作为AI基础设施的提供者,必须深入理解AI团队的需求,并提供最优解决方案。

AI对基础设施的新要求

AI基础设施对于传统IT团队而言是一片全新的疆域。团队可能在GPU等加速硬件、异构系统架构方面经验不足。尽管团队在数据存储和管理上有深厚积累,但对AI的工作原理和应用场景却可能知之甚少。AI环境通常处理来自多个异构数据源的信息,这些数据需要经过数据工程师的精心整理,才能用于模型训练。这些数据可能来自关系型数据库、文件系统、甚至外部数据源,且格式不统一、存储位置分散。数据的规模庞大,进一步增加了处理的复杂性。

图1. AI典型数据流

数据科学团队负责数据的质量和可用性,但IT部门需要提供坚实的技术基础。数据科学团队要求数据能够即时获取,这对存储系统的性能提出了极高的要求。IT团队在选择存储系统时,需要充分考虑数据访问的I/O特性,并优化与GPU或加速器的互联。此外,数据复制、保护和数据库访问等数据服务也是IT基础设施需要提供的关键功能。

目前,AI开发主要集中在公有云平台上。企业通常会选择已有的基础模型,并利用私有数据进行微调,以创建定制化的AI模型。生成式AI中的检索增强生成(RAG)就是一个典型的例子。RAG通过引入新的、定制化的数据,提升了大型语言模型的准确性、时效性和相关性。

由于公有云在AI开发中占据主导地位,数据科学团队对云端存储系统的性能、可用性和保护机制的重视程度往往不够。因此,IT部门需要深入了解业务需求,评估各种存储解决方案,并向数据科学团队清晰地传达本地部署的优势。在私有环境中,IT部门需要考虑数据的存储位置、访问方式、以及数据保护和安全合规性等方面的问题。

随着AI应用的不断深入,企业开始将AI工作负载从公有云迁移到本地数据中心,或者采用混合云部署模式。一方面,公有云的高昂成本在规模化部署时会成为企业的负担;另一方面,数据安全、隐私保护以及对资源的掌控需求也在推动企业向本地化迁移。此外,新型的基础设施和存储即服务(SaaS)解决方案的出现,

AI本地化存储的特性

用于训练AI模型的数据来源广泛,包括结构化和非结构化数据。这些数据通常存储在数据湖或数据湖仓中,以满足AI/ML项目对大规模、高性能存储的需求。数据工程师创建的训练数据集是AI模型训练的基石。数据科学团队对存储系统的性能要求极高,包括大容量、高带宽和低延迟。

图2. AI/ML和BI数据平台

随着AI的发展,对存储系统的需求也日益多样化。全闪存存储凭借其性能一致性,成为AI存储的首选。AI环境在不同发展阶段对存储系统的需求也不同:

  • 初始/成熟阶段:需要兼具高性能文件存储和对象存储。

  • 生产级:需要大规模容量的文件和对象存储,同时保持高性能。

IT基础设施团队和AI平台架构师对存储系统都有各自的关注点。对于存储系统,除了传统的性能、可靠性、安全性和可扩展性之外,还应考虑以下特性:

  • 性能:AI工作负载对性能的可预测性和一致性要求极高。全闪存存储能提供低延迟和高带宽,是理想选择。

  • 可靠性与数据保护:存储系统应具备容错能力,防止数据丢失。

  • 安全性:采用最佳实践保护数据安全。

  • K8s原生支持:考虑到Kubernetes在AI/ML领域的广泛应用,存储系统应与K8s无缝集成。

  • 加速****MLOps:数据科学家应能自助访问存储、向量数据库和ML服务,加速模型开发。

  • 可扩展性:存储系统应能线性扩展,以满足不断增长的数据需求。

  • 简单性:易于配置和管理,减少运维负担。

  • 成本效益:存储成本应与容量成正比,且不影响性能。

  • 能效:存储系统应节能,以降低总体拥有成本。

总结

AI的迅猛发展给传统的IT基础设施带来了前所未有的挑战,尤其是数据存储与管理方面。这些挑战不仅新颖,而且与以往的IT问题存在显著差异。例如,AI平台架构师可能对IT环境中的操作流程和关键数据存储的特性并不熟悉,他们的经验往往集中在公共云环境。鉴于此,组织在部署和发展AI环境时,必须做出关键的IT决策。

其中,选择合适的存储类型是至关重要的。一个理想的数据存储平台应具备以下特点:

  • 加速AI落地:从早期部署到成熟的AI生产环境,该平台能够显著缩短AI项目的交付周期。

  • 全方位性能:在性能、效率、可靠性、数据保护、扩展性和易用性等方面提供均衡且一致的解决方案,满足不同使用场景和成本要求。

  • 高级功能:支持快速部署、简化操作、无需复杂培训、最大化效率,并提供多维性能和多协议访问等高级特性。

  • 容器化友好:与主流容器编排框架(如Kubernetes)无缝集成,简化有状态应用程序的管理。

  • 显著缩短模型开发周期:能够帮助企业快速搭建一个能够训练和部署私有数据的AI环境,从而加速AI项目的落地。

  • 高置信度:系统的稳定性和可靠性能够最大程度地减少存储基础设施部署的时间,降低项目风险。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值