基于bge-m3的焊接垂直领域语义向量模型微调

前言

说实话,之前对语义向量模型并不看重,甚至还一度把语义向量模型和以word2vec为代表的词向量模型搞混,直到看了“大耳朵爱学习”发布的博文《RAG 高效应用指南:Embedding 模型的选择和微调》,才意识到语义向量模型对于RAG的重要意义,所以决定好好学习一下。

向量模型简单介绍

万物皆可 Embedding,尤其在推荐系统、自然语言处理以及计算机视觉等领域,它类似于“人类大脑感知神经”,承担着至关重要的角色。其核心在于将高维且稀疏的数据转化为低维且密集的向量形式,这样的转换有助于揭示数据中的语义或特征联系。具体而言,Embedding 通过多维密集向量来表征事物的各种属性,进而在一个连续的向量空间内描绘出不同事物之间的相似性与差异。采用这种方式,不仅计算效率得到提升,而且模型对于数据深层次结构和关系的把握能力也得到了加强。

向量模型在RAG中的重要性

语义向量模型在RAG中的作用可以比作“索引编排器”,如果模型在对私域知识进行向量化表示的过程中表现不佳,那么即使 RAG 系统在其它方面设计得当,最终效果也难以达到预期水平 。

对于向量模型,之前关注的重点多是语言类型和模型规模,偶尔看看向量的维度,所以一直忽略了处理上下文长度这一关键参数,真实情况是:如果文本的输入长度大于向量模型支持的最大 tokens 长度,则文本被会截断,从而破坏了文本的完整性,这样会直接影响下游任务的效果。

之前国内的开源向量模型的输入长度一般是512tokens,这个长度很难在实际生产环境获得好的效果。幸好,BAAI推出了超牛的BGE-m3模型,它的输入长度达到了8192tokens。

垂域内向量模型微调

01

重要优势

使用焊接垂直领域的数据来微调 BGE-M3 语义向量模型有以下几个重要优势:

1领域特异性优化

l 焊接领域有大量专业术语和特定表达方式

l 通用模型可能无法准确理解焊接领域的专业概念和语义关系

l 微调后的模型能更好地理解焊接相关的查询意图

2提升 RAG 系统效果

l 更准确的语义相似度计算

l 能更好地匹配用户查询与知识库文档

l 减少语义理解偏差

l 提高检索准确率

l 返回更相关的检索结果

l 降低无关文档的干扰

3实际应用价值

l 提升焊接领域问答系统的性能

l 更好地服务专业用户的信息需求

l 提高系统的实用性和可靠性

4技术优势

l BGE-M3 本身具有强大的多语言理解能力

l 通过领域数据微调可以保持模型基础能力

l 同时获得领域特定的语义理解能力

02

微调情况

模型概述

本模型是基于bge-m3进行微调获得的,目的是利用bge-m3的长文本处理能力来提升焊接知识问答的效果。

数据集

数据集来自于焊接业内一位大佬写的一本焊接缺陷相关的书,通过使用大模型,从书中抽取4000余条问答对,然后按照flagembedding微调方法的要求来制作所需的数据集。

模型训练参数

torchrun --nproc_per_node 1 /显卡数量

-m FlagEmbedding.finetune.embedder.encoder_only.m3 /微调模块

–model_name_or_path model/BAAI/bge-m3 /原始模型

–cache_dir ./cache/model

–train_data ./weld_train.jsonl /训练数据集文件

–cache_path ./cache/data /训练产生数据文件存储

–train_group_size 6 /训练样本组大小

–query_max_len 512 /问题的最大输入长度

–passage_max_len 2048 /答案的最大输入长度

–pad_to_multiple_of 8 /padding后的文本长度需是8的倍数

–knowledge_distillation True /启用知识蒸馏

–same_dataset_within_batch True

–small_threshold 0

–drop_threshold 0

–output_dir ./weld_imperfection

–overwrite_output_dir

–learning_rate 1e-5 /学习率

–fp16

–num_train_epochs 5

–per_device_train_batch_size 1

–dataloader_drop_last True

–warmup_ratio 0.1

–gradient_checkpointing /使用梯度检查点以节省显存

–deepspeed …/ds_stage0.json

–logging_steps 100

–logging_strategy steps

–save_steps 1000

–negatives_cross_device

–temperature 0.02

–sentence_pooling_method cls

–normalize_embeddings True

–kd_loss_type m3_kd_loss

–unified_finetuning True

–use_self_distill True

–fix_encoder False

–self_distill_start_step 0

–report_to tensorboard

–gradient_accumulation_steps 8 /梯度累积步长

–query_instruction_for_retrieval “”

训练过程

模型效果

=== 评估结果 ===

基座模型结果: recall@1: 0.4499 mrr@1: 0.8998 ndcg@1: 0.8998 recall@3: 0.5501 mrr@3: 0.9266 ndcg@3: 0.6229 recall@6: 0.5956 mrr@6: 0.9309 ndcg@6: 0.6455

微调模型结果: recall@1: 0.4895 mrr@1: 0.9790 ndcg@1: 0.9790 recall@3: 0.5781 mrr@3: 0.9883 ndcg@3: 0.6638 recall@6: 0.6096 mrr@6: 0.9889 ndcg@6: 0.6792

改进幅度: recall@1: +3.96% mrr@1: +7.93% ndcg@1: +7.93% recall@3: +2.80% mrr@3: +6.18% ndcg@3: +4.09% recall@6: +1.40% mrr@6: +5.80% ndcg@6: +3.38%

从结果可看出,top-1的MRR指标提升了近8%。

收尾

训练好的模型已经上传到魔搭社区,欢迎大家下载试用,后面如果有更好的模型,会持续更新。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### bge-m3 和 Dify 技术文档与应用案例 #### 关于 BGE-M3 的技术细节和使用方法 对于创建基于 `bge-m3` 模型的高效向量存储,可以采用如下 Python 函数来处理文档集合: ```python from langchain.embeddings.huggingface import HuggingFaceEmbeddings from langchain.vectorstores.faiss import FAISS def create_docs_vector(docs): # 初始化嵌入对象,并指定模型路径以及编码参数 embeddings = HuggingFaceEmbeddings( model_name="/path/to/bge-m3", encode_kwargs={'normalize_embeddings': True} ) # 使用 FAISS 构建索引结构 vector_store = FAISS.from_documents(docs, embeddings) return vector_store ``` 此代码片段展示了如何加载预训练好的 `bge-m3` 模型并将其应用于给定的一组文档上以生成相应的向量表示[^1]。 为了加速计算过程,在实例化 `BGEM3FlagModel` 类时可以选择开启半精度浮点数支持(即设置 `use_fp16=True`),这会在一定程度上提高运算速度的同时略微降低性能表现[^2]: ```python from FlagEmbedding import BGEM3FlagModel model = BGEM3FlagModel('BAAI/bge-m3', use_fp16=True) ``` #### Dify 平台介绍及其特性概述 Dify 提供了一个全面的服务框架用于简化大型语言模型的应用程序开发流程。其核心优势在于能够使开发者更便捷地完成从模型微调到最终产品发布的整个周期内的各项工作任务。具体来说,该平台具备以下几项重要能力[^3]: - 支持多种主流 LLMs; - 集成了丰富的工具链和服务接口; - 友好的图形界面便于操作管理; - 开放 API 接口方便二次开发定制; - 完善的安全机制保障数据隐私安全; 这些特性的组合使得即使是不具备深厚机器学习背景的知识工作者也能够在较短时间内掌握并运用这项先进技术成果去解决实际业务挑战。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值