1. Parallelized Autoregressive Visual Generation
自回归模型已成为视觉生成任务的一个强大方法,但由于其逐个token的预测过程,它们遭受了缓慢的推理速度。在本文中,我们提出了一种简单有效的并行生成策略,用于并行化的自回归视觉生成,该方法在提高生成效率的同时保留了自回归建模的优势。我们的关键是并行生成依赖于视觉token之间的依赖关系——弱依赖关系的token可以并行生成,而强依赖关系的相邻token难以一起生成,因为它们的独立采样可能导致不协调。基于这一观察,我们开发了一种并行生成策略,该策略并行生成具有弱依赖关系的远处token,同时为强依赖关系的局部token保持顺序生成。我们的方法可以无缝地集成到标准的自回归模型中,无需修改架构或分词器。在ImageNet和UCF-101上的实验表明,我们的方法在保持相似质量的同时实现了3.6倍的速度提升,并且在图像和视频生成任务中最多可实现9.5倍的速度提升,质量下降最少。我们希望这项工作能激发未来在高效视觉生成和统一自回归建模方面的研究。项目页面:https://epiphqny.github.io/PAR-project。
论文: https://arxiv.org/pdf/2412.15119
2. SCOPE: Optimizing Key-Value Cache Compression in Long-context Generation
键值(KV)缓存已成为长上下文生成中大语言模型(LLMs)的瓶颈。尽管在这个领域投入了大量努力,但解码阶段的优化往往被忽视。然而,我们认为这种优化至关重要,特别是在以下两个基础上:(i)预填充阶段过度压缩,需要特定的完整上下文会妨碍推理任务的理解;(ii)在长输出的推理任务中,重击项会出现偏差。因此,本文提出了SCOPE,这是一个简单而有效的框架,分别在预填充和解码阶段进行KV缓存优化。具体来说,在预填充阶段保留KV缓存以保持必要的信息,而在解码阶段提出了一种基于滑动的新策略来选择必要的重击项。进一步通过自适应和断续策略优化内存使用和内存传输。在LongGenBench上的广泛实验表明,SCOPE的有效性、泛化能力和与其他仅预填充KV压缩方法的兼容性。
论文: https://arxiv.org/pdf/2412.13649
3. CLEAR: Conv-Like Linearization Revs Pre-Trained Diffusion Transformers Up
扩散transformer(DiT)已成为图像生成的领先架构。然而,注意力机制的二次复杂度,负责建模token之间的关系,导致在生成高分辨率图像时存在显著的延迟问题。为解决这个问题,本文旨在提出一种线性注意力机制,将预训练的DiTs的复杂性降低到线性。我们从现有高效注意力机制的全面总结出发,并确定了四个关键因素,对于成功线性化预训练的DiTs至关重要:局部性、公式一致性、高秩注意力图和特征完整性。基于这些见解,我们提出了一种类似于卷积的局部注意力机制,称为CLEAR,该机制将特征交互限制在一个围绕每个查询token的局部窗口内,从而实现线性复杂度。我们的实验表明,通过仅在10K个自我生成样本上微调注意力层10K次,我们可以有效地将知识从一个预训练的DiT转移到一个具有线性复杂性的学生模型中,生成的结果与教师模型相当。同时,它将注意力计算减少了99.5%,并且在生成8K分辨率图像时加速了6.3倍。此外,我们还研究了蒸馏注意力层的一些有利特性,如跨不同模型和插件的零样本泛化能力,以及增强的多GPU并行推理支持。模型和代码可在此处获得:https://github.com/Huage001/CLEAR。
论文: https://arxiv.org/pdf/2412.16112
4. Taming Multimodal Joint Training for High-Quality Video-to-Audio Synthesis
我们提出了一种新的多模态联合训练框架MMAudio,用于在给定视频和可选文本条件下合成高质量和同步的音频。与仅依赖于有限视频数据的单模态训练不同,MMAudio与大量、易于获取的文本-音频数据联合训练,以学习生成语义对齐的高质量音频样本。此外,我们通过采用流动匹配目标进行训练,采用一个条件同步模块,在帧级将视频条件与音频潜在变量对齐,以提高音频-视觉同步性。MMAudio在公开模型中以音频质量、语义对齐和音频-视觉同步性方面达到新的视频到音频的最新水平,具有较低的推理时间(生成8秒片段需要1.23秒)和仅157M参数。MMAudio在文本到音频生成方面也表现出竞争性能,表明联合训练不会妨碍单模态性能。代码和演示可在以下网址获得:https://hkchengrex.github.io/MMAudio
论文: https://arxiv.org/pdf/2412.15322
5. TRecViT: A Recurrent Video Transformer
我们提出了一种用于视频建模的新模块。它依赖于时间-空间-通道因子分解,并为每个维度配备了专用模块:门控线性递归单元(LRUs)执行时间上的信息混合,自注意力层执行空间上的信息混合,而MLP则在通道上进行操作。由此产生的架构TRecViT在稀疏和密集任务上表现良好,在监督学习或自我监督学习中进行训练。值得注意的是,我们的模型是因果性的,并在大规模视频数据集(SSv2,Kinetics400)上优于或与纯注意力模型ViViT-L相当,同时参数量仅为其三分之一,内存占用量仅为其1/12,计算量仅为其1/5。代码将在以下网址提供: https://github.com/google-deepmind/trecvit。
论文: https://arxiv.org/pdf/2412.14294
6. Offline Reinforcement Learning for LLM Multi-Step Reasoning
提高大语言模型(LLMs)的多步推理能力对于快速适应复杂任务非常重要,这需要通过离线强化学习(RL)来实现。虽然直接偏好优化(DPO)有助于使LLMs与人类偏好保持一致,但它不太适合多步推理任务,因为(1)DPO依赖于成对的偏好数据,而这些数据对于多步推理任务来说并不容易获得;(2)它对所有文本处理一致,使其在多步推理任务中的信用分配无效,而这些任务通常具有稀疏奖励。在本文中,我们提出了OREO(Offline Reasoning Optimization),一种用于增强LLM多步推理的离线RL方法。基于最大熵强化学习的先前研究,它通过优化软贝尔曼方程,同时学习策略模型和价值函数。我们原则上证明了它减少了收集成对数据的需求,并能够更好地进行信用分配。实验表明,OREO在包括数学推理任务(GSM8K、MATH)和实体Agent控制(ALFWorld)的多步推理基准测试中,超过了现有的离线学习方法。当有额外资源时,该方法可以扩展到多迭代框架中。
论文: https://arxiv.org/pdf/2412.16145
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。