近期,中科大出品了一篇关于知识导向检索增强型生成(Retrieval-Augmented Generation, RAG)的综述,全面介绍了RAG的基本原理、关键组件、特性、挑战以及在不同领域的应用,并探讨了未来发展的7种RAG技术形态。
RAG研究组织框架。时间线从2020年延续至当下,将RAG相关研究分为三大领域:基础(包括RAG学习和RAG框架)、**高级以及评估。**时间线上还标记了语言模型领域的重要里程碑(如GPT-3、ChatGPT、GPT-4)。
不同RAG综述的比较**。LLM**:是否在大型语言模型的背景下讨论RAG;多模态:是否涵盖多模态RAG;图结构:是否讨论RAG中的图结构化信息;高级:对高级RAG技术的覆盖范围;评估:是否涉及评估方法;知识:是否采用以知识为中心的视角。
一、RAG基本原理
- 问题表述:将输入序列转换为输出序列,通过检索函数从外部知识库中提取相关信息,增强生成过程。
- 检索:从外部知识源中获取有用知识,包括文本、图像、音频等多种模态,以及结构化和非结构化数据。
- 生成:结合内部知识和检索到的外部知识,生成连贯、相关的输出。
- 知识整合:将内部知识与检索到的外部知识进行整合,是RAG的核心环节。
三、RAG的关键特性与挑战
探讨了检索增强型生成(RAG)模型的核心要素和目标,详细分析了用户意图理解、知识检索、知识整合、答案生成和评估指标等关键环节。这些要素共同构成了RAG系统的框架,并揭示了其在自然语言处理任务中的重要性和面临的挑战。
- 精准的用户意图理解
准确理解用户意图是生成相关响应的关键,但用户查询的模糊性和多样性增加了理解难度,需借助文本建模、查询重写等策略提升意图理解的准确性。
- 准确的知识检索
知识检索为生成过程提供相关上下文,直接影响输出质量,但处理大规模数据集、平衡精确度与召回率以及应对动态数据源是其主要挑战,需优化检索算法并利用相关性反馈来解决。
- 无缝的知识整合
将外部知识与内部知识无缝整合是生成连贯输出的重要环节,面临处理不同数据类型、解决知识冲突和确保知识时效性的挑战,可通过多层整合策略灵活处理不同来源的知识。
四、RAG基本方法
- 用户意图理解:通过查询分解和查询重写等技术,提高查询质量。
- 知识源与解析:RAG可以利用结构化、半结构化、非结构化和多模态知识。
- 知识嵌入:将知识分割成有意义的单元,并转换为向量嵌入,便于检索。
- 知识索引:为大规模数据集创建结构化索引,提高检索效率。
- 知识检索:根据输入查询检索相关知识,包括稀疏检索、密集检索和混合检索策略。
- 知识整合:通过输入层、中间层和输出层整合检索到的知识。
- 答案生成:通过去噪和推理生成准确、连贯的输出。
- 知识引用:为生成的内容提供引用,确保透明度和可信度。
RAG采用的答案生成策略,包括去噪和推理。
五、RAG的高级方法
-
RAG训练:包括静态训练、单向引导训练和协作训练,优化检索和生成组件的协同工作。
-
多模态RAG:整合多种模态数据,如图像、音频和视频,以增强输出。
-
记忆增强RAG:引入显式记忆机制,处理长文档理解和个性化知识。
-
Agentic RAG:引入自主Agent进行动态优化,处理复杂任务。
六、RAG未来发展
- GraphRAG:结合知识图谱增强RAG的推理能力。
- 多模态RAG:整合多种模态数据,提升理解能力。
- 个性化RAG:根据用户偏好和历史行为提供个性化响应。
- Agentic RAG:通过自主代理进行动态优化,处理复杂任务。
- RAG与生成模型的结合:探索与扩散模型等其他生成模型的结合。
- EdgeRAG:在边缘计算环境中部署RAG,降低延迟并保护隐私。
- 可信RAG:提高RAG系统的可解释性和可信度。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。