HuggingFace 推出最小体积多模态模型,浏览器运行成为现实!

1. SmolVLM 模型家族简介

1.1 什么是 SmolVLM-256M 和 SmolVLM-500M,它们为何如此重要?

在人工智能的多模态模型领域,如何在有限的计算资源下实现强大性能一直是一个重要的挑战。SmolVLM-256M 和 SmolVLM-500M 是最近推出的两款视觉语言模型,它们不仅突破了传统“大模型”的局限,还实现了在体积极小的情况下,提供强大多模态处理能力的目标。

SmolVLM-256M 被誉为全球最小的 VLM,拥有仅 256 百万个参数,突破了以往对大模型参数量的认知。这两个模型的推出,标志着在计算资源受限的环境下仍然能够实现出色的多模态性能的新时代。这不仅有助于降低运行成本,也为 AI 技术的普及提供了新的契机。

SmolVLM-500M,虽然在参数上略大一些,但相较于之前的 2B 模型,依然保持了非常小巧的体积。其性能相较于 256M 模型有了进一步的提升,同时也更加适应生产环境中的高效推理。

1.2 SmolVLM-256M 和 SmolVLM-500M 与之前的 SmolVLM 2B 模型在性能和大小上的对比

与 SmolVLM 2B(20 亿参数)相比,SmolVLM-256M 的参数量减少了 8 倍,SmolVLM-500M 则减少了接近 4 倍。然而,这些新模型在多模态任务中的表现令人惊讶地出色,甚至在某些任务上超越了较大的模型。

例如,SmolVLM-256M 能够在图像描述、文档问答等任务中,超越了 17 个月前的 Idefics 80B 模型的表现。同时,SmolVLM-500M 提供了更多的性能空间,尤其在视觉推理和多任务处理方面表现更为优越。尽管两款模型体积小巧,但其表现已足以应对生产环境中的许多实际需求,并且在处理速度、响应时间和计算成本方面展现出了巨大的优势。

2. 为什么要做小模型?

随着深度学习的快速发展,大型模型虽然在性能上有着不可忽视的优势,但它们的庞大体积和高昂计算成本,使得许多应用场景受到限制。因此,如何在保证模型高效性和强大性能的同时,减少计算资源消耗,成为了业内的重要课题。

SmolVLM 模型的发布正是对这一挑战的回应。相较于传统的大型模型,SmolVLM 系列模型通过参数量压缩,显著降低了计算开销,同时仍能保持高效的多模态性能,适用于以下几个场景:

  • 资源受限设备:如智能手机、嵌入式设备等,运行小型模型能够显著减少对硬件资源的要求,降低部署成本。

  • 浏览器推理:越来越多的 AI 应用开始向浏览器端迁移,SmolVLM 模型因其小巧的体积,非常适合在浏览器中进行高效推理。

  • 大数据处理:在处理海量数据时,SmolVLM 可以以极低的成本提供合理的性能,为大规模数据分析提供支持。

通过小型化模型的不断推进,SmolVLM 不仅让 AI 技术能够在更多设备上落地,也为许多计算资源有限的场景提供了更为高效的解决方案。

3. 这些模型的应用场景

SmolVLM-256M 和 SmolVLM-500M 虽然在参数量上大大减少,但它们依然能够胜任一系列复杂的多模态任务,适用于各种实际场景:

  • 图像描述(Captioning):这两款模型能够为图像和短视频生成自然语言描述,帮助智能设备理解和处理视觉内容。

  • 文档问答(Document Q&A):能够从 PDF 文件、扫描文档中提取信息并解答用户的相关问题,适合在企业级应用和文档自动化处理领域使用。

  • 基础视觉推理(Basic Visual Reasoning):在面对图表、流程图等视觉数据时,SmolVLM 模型能够回答基于视觉内容的问题,适用于数据分析、报告生成等应用。

除了这些常规的多模态任务,SmolVLM 系列模型的紧凑体积使其非常适合 受限设备(如边缘设备、IoT 设备)以及 浏览器推理 的应用场景。而在实际应用中,SmolVLM 模型也非常适用于 多模型工作流,可以与其他专业化模型协同工作,提升整体效率。

例如,在智能家居领域,SmolVLM-256M 可以帮助设备理解用户的语音指令,并通过图像识别功能生成响应。类似地,它还可以在企业文档管理系统中,通过文档问答功能快速处理大量的文本数据,极大提高工作效率。

4. 总结

SmolVLM-256M 和 SmolVLM-500M 的发布是多模态模型技术领域的一次重要创新突破。它们不仅打破了“体积大、性能强”的传统观念,也为 AI 技术在各种受限设备和低成本环境中的应用开辟了新的道路。

这两个模型在参数量上虽大幅压缩,但在图像描述、文档问答和视觉推理等任务中的表现依然优秀,证明了小型化和高效性能是可以并存的。它们的发布不仅降低了 AI 模型的计算成本,也为未来的智能设备、边缘计算以及云端推理带来了新的机遇。

随着技术的不断进步,我们可以预见,SmolVLM 系列将成为越来越多实际应用的核心技术,推动各行各业的智能化进程。而对于开发者来说,这些模型不仅是多模态任务的强大工具,也是高效、高性价比的解决方案。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值