dify案例分享-Qwen3 vs 传统合同审查,这场对决谁能胜出?

1.前言

Qwen3是阿里巴巴于2025年4月29日发布的一款开源混合推理模型,其特点和性能在多个方面都取得了显著突破.一张图给大家看懂Qwen3

image-20250429120048565

另外dify 在2025年4月28日也升级到1.3.1 版本了。具体升级了哪些东西我们看一张图

image-20250429120701574

今天就带大家使用本地ollama 搭建qwen3 模型结合dify 1.3.1 版本实现合同评审工作流。 工作流截图如下:

image-20250429145121654

2.ollama 安装和模型下载

ollama安装

ollama 在官方网站上也第一时间实现了qwen3模型是的适配,官方地址https://ollama.com/

image-20250429130040911

这里下载最新版本ollama 我本地电脑使用windows 所以我下载windonw版本

image-20250429130206373

ollama 安装比较简单,点击安装就可以了。 安装完成后,我们在cmd命令窗口查看

image-20250429130303021

看到上面显示ollama version 说明安装成功。接下来我们下载qwen3

https://ollama.com/library/qwen3

image-20250429130402012

在模型列表中我们选择qwen3,我电脑上只有4060显卡 支持的8GB显存,所以我先现在8B版本的模型(4B量化模型)

qwen3 模型下载

ollama  pull qwen3:8b

输入上面命令后 系统会自动下载模型,大概几分钟完成模型的下载。我们可以输入如下命令查看模型列表

ollama list 

image-20250429130721692

模型启动和运行

ollama run qwen3:8b

image-20250429131023783

默认开启了think 模式

我们简单测试一下,我们给出下面的问题

阿里开源的模型有哪些?从2023年开始到现在时间点,请详细展开

image-20250429131245970

image-20250429131315157

image-20250429131330267

回答的还不错,速度也还可以。

3 .dify 上配置ollama版qwen模型

关于dify 的安装我们这里就不做详细展开,下面给大家贴一下安装后的截图。

image-20250429131549707

image-20250429131608724

我们使用Docker Desktop 实现上述安装。

dify配置ollama

浏览器输入地址http://localhost

image-20250429131839346

我们点击右上角设置,点击模型供应商

image-20250429131905140

这里我们选择ollama 安装

image-20250429131942880

安装完成后我们在待分配模型中会出现Ollama

image-20250429133600582

我们填下如下内容

模型名称:qwen3:30b-a3b

基础 URL:http://172.35.xx.xx:11434

模型类型:对话

模型上下文长度:32768

最大 token 上限:32768

image-20250429151921430

其中模型名称是ollama对外提供的模型,基础 URL 是局域网地址(建议不要填写localhsot),模型上下文长度和最大 token 上限 这个是模型支持的上下文的能力 具体要看模型支持,简单看上面的截图中提到的,简单粗暴我们就填32768

image-20250429134058630

dify 验证qwen3

我们创建一个聊天助手。 模型选择qwen3

image-20250429134313666

下面我们测试验证一下。

image-20250429134459948

我们知道这次qwen3 支持 思考模式和非思考模式,可以使用参数来控制。

</no_thinck> 给我写一个最新的模型排名情况?

image-20250429134916284

image-20250429134937083

呵呵把自己排名放到前面了。

上面我们基本把qwen3在 dify 平台上跑起来了。下面我们重点介绍一下合同评审在这个qwen3模型上的表现。

4.工作流搭建

这个工作流用到了markdown转换器工具,我们按照上面的操作把工具安装好。

image-20250429140032425

关于工作流的配置我们这次就不带大家一起来一步一步配置了。我们可以在我们开源的项目中导入即可。文章后面会给大家详细地址

image-20250429141426669

image-20250429141355194

开始节点中我们这里有4个参数。

1、请上传需要审查的文本。

2、请选择合同审查主体

3、工作领域

4、合同审查要点

image-20250429141646367

合同审查llm 系统提示词

 ## Role: 
律师({{#1740449748004.workfield#}})
 
## Profile:
- language: 中文
- description: 你是一个律师,以{{#1740449748004.Apart#}}利益最大化为原则,对{{#context#}}进行审查分析, 给出评分和改进建议,帮助用户改进和完善合同。
 
## Goals:
- 对输入的合同文本审查分析后,指出合同的问题和存在的风险
- 对于改进和完善合同,给出建议
- 根据建议,修改具体的条款
- 给提供专业的法律服务

 
## Constrains:
- 要依据正在适用的法律,不能引用废止的法律条文
- 合同条款约定应当符合最新法律法规及相关政策要求
- 专用名称地点应当准确
- 要结合建筑工程的行业,不能随意
- 要结合{{#1740449748004.Apart#}}的要求,站在{{#1740449748004.Apart#}}的立场
- 要做出有利于{{#1740449748004.Apart#}}的条款
- 对于{{#1740449748004.Apart#}}不利的条款,要及时指出
- 对于显著偏向于{{#1740449748004.Apart#}}的不公平条款,需要与对方充分协商
 
## Skills:
- 熟悉中国的法律,并能熟练引用法律
- 法律专业技能非常强,熟悉诉讼的程序和流程
- 经验非常丰富,擅长处理各种纠纷
- 对于建筑行业非常了解
- 团队配合能力强,组织团队为{{#1740449748004.upload#}}服务
- 熟练使用各种软件,效率非常高
 
## attention
{{#1740449748004.attention#}}

## example
该份合同存在的问题:
-1.
-2.
对客户不利的条款:
-1. { };解释原因:
-2. { };解释原因:

修改的建议:
-1.
-2.
-3.
-4.
N


修改的具体条款:
-将“xxx条款”修改为“ ”
-将“xxx条款”修改为“ ”
-将“xxx条款”修改为“ ”

 
## output format:
该份合同存在的问题:
-1.
-2.
对客户不利的条款:
-1. { };解释原因:
-2. { };解释原因:

修改的建议:
-1.
-2.
-3.
-4.
N


修改的具体条款:
-将“xxx条款”修改为“ ”
-将“xxx条款”修改为“ ”
-将“xxx条款”修改为“ ”

该工作流主要是2个LLM语言模型和1个文档提取器,另外2个markdown转PDF和转WORD插件工具组成。

5.工作流验证及测试

我们上传需要测试的合同文档。已经关键信息

image-20250429143228758

测试结果

image-20250429143307716

image-20250429143331481

同时生成的2份PDF和word的修改意见。

image-20250429143527855

我们对比一下之前其他模型的测试效果。

我们之前的工作流用的是2个模型合同审查要点生成 使用的硅基流动提供的glm4-32b-0414模型,合同审查LLM是火山引擎提供的deepseek-v3模型

image-20250429144328384

对比一下最终生成的风险点word

image-20250429144619445

左边是基于deepseek-v3模型生成的审查风险报告,右边是qwen3-30b-a3b (ollama部署),能看的出来右边的风险点更加详细,审查的内容提到了《信息安全技术 网络安全等级保护基本要求》这个具有法律依据的文献材料,这样让这个合同审查更加具有说服力。当然本次测试是没有基于第三方合同审查内容知识库(RAG)部分,完全是看模型本身对合同风险点的能力输出。输出的时候我没有调整 参数所以执行时间比较长。总体来说能力还是不错的,大家也可以自行去测试。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### Dify 语音播报功能及其应用案例 Dify 是一款支持多模态交互的人工智能开发平台,能够帮助开发者快速构建具备自然语言处理能力的应用程序。关于 Dify 的语音播报功能,它主要通过集成文本到语音(Text-to-Speech, TTS)技术实现,使用户不仅可以通过文字形式接收信息,还能听到清晰流畅的语音反馈。 #### 功能概述 Dify 平台允许开发者自定义代理助理的行为模式,其中包括设置对话开场白和初始问题[^1]。这使得当用户首次与代理助理互动时,系统可以主动提供任务类型的介绍以及可提问的例子。这种设计有助于提升用户体验并引导用户更高效地利用系统的各项功能。 对于具体的 **语音播报示例** 和 **实际应用场景** ,虽然官方文档未详尽列举所有可能的情况[^2],但从已知的功能特性出发,以下是几个典型的使用场景: 1. **客户服务机器人** - 场景描述:企业网站或移动应用程序中的虚拟客服角色采用 Dify 技术来响应客户的咨询请求。 - 实现方式:客户输入查询后,除了显示书面答复外,还会播放对应的音频文件解释解决方案。 2. **教育辅助工具** - 应用领域:在线学习平台上部署基于 Dify 构建的教学助手,用于朗读课程材料或者解答学生疑问。 - 特点优势:相比单纯依赖视觉媒介传递知识而言,加入听觉维度能更好地满足不同学习风格的需求。 3. **智能家居控制中心** - 工作原理:连接至家庭自动化设备网络之后,该类软件可通过声控命令完成诸如调节灯光亮度、设定闹钟时间等功能操作;与此同时也会发出确认通知告知当前状态改变情况如何。 4. **无障碍访问服务** - 面向群体:视力受损人士或其他难以依靠传统屏幕阅读方法获取资讯者。 - 解决方案:借助高质量合成音效再现网页内容摘要或者其他重要数据片段供这类特殊需求人群收听理解。 下面给出一段简单的 Python 脚本演示如何调用 API 接口触发一次基本的声音输出过程: ```python import requests def generate_speech(text): url = "https://api.dify.com/v1/synthesize" headers = { &#39;Authorization&#39;: &#39;Bearer YOUR_ACCESS_TOKEN&#39;, &#39;Content-Type&#39;: &#39;application/json&#39; } payload = {"text": text} response = requests.post(url, json=payload, headers=headers) if response.status_code == 200: audio_url = response.json().get(&#39;audioUrl&#39;) return audio_url else: raise Exception(f"Error generating speech: {response.text}") if __name__ == "__main__": sample_text = "欢迎来到Dify的世界!" try: result = generate_speech(sample_text) print(result) except Exception as e: print(e) ``` 上述代码展示了发送 POST 请求给指定端点从而获得对应于特定字符串发音链接的过程。需要注意的是,在真实环境中应当妥善保管个人认证令牌以免泄露敏感权限信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值