前言:在飞速发展的AI时代,科学研究正面临前所未有的机遇与挑战。海量的文献资料、广泛而深入的跨学科专业知识、复杂的实验设计、模拟实验并预测结果、以及伦理和安全问题,都对科研人员提出了更高的要求。为了助力科学家们在生物医学等领域取得突破,谷歌推出能够帮助科学家模拟科学研究的推理过程、生成新的研究假设和实验方案的创新性 AI Co-Scientist多智能体项目,协助科学家们加速科研发现。
AI重构未来
AI正快速改变我们生活的方方面面、重塑千行百业。本公众号持续跟踪AI前沿领域,AI驱动的行业和智能科技产品,探索AI应用场景和AI智能体aiagent落地途径,分享AI科普知识和工具使用心得!
谷歌在应用**人工智能协助科学发现(AI for Science)方面已经取得了一些巨大成功,特别是其 AlphaFold 系统,该系统用于预测所有生命分子的结构和相互作用,包括蛋白质、DNA 和 RNA,其负责人戴米斯·哈萨比斯(Demis Hassabis)和 大卫·贝克(David Baker)**去年因此获得了诺贝尔化学奖。**为了助力科学家们在生物医学等领域取得更多突破,谷歌推出了创新性的 AI Co-Scientist(**AI 联合科学家)项目。
1、什么是 AI Co-Scientist?
AI Co-Scientist (AI 联合科学家)是一个基于 Gemini 2.0 大语言模型构建的多智能体系统。它不是一个简单的工具,而是一位能够与科学家并肩合作的“虚拟科研伙伴”。AI Co-Scientist 旨在模拟科学研究的推理过程,帮助科学家产生新的研究假设、创建全面的研究概述、设计实验方案、分析复杂数据集、提出创新解决方案、模拟实验并预测结果和根据反馈和新数据调整方案等,协助科学家们加速科研发现。
2、AI Co-Scientist 的工作原理
AI Co-Scientist 的核心在于模拟人类的科学研究方法。 它通过多个AI智能体的协同运作,完整模拟从研究假设的产生到实验方案的设计整个过程。这些AI智能体使用自动反馈来迭代生成、评估和完善假设,从而形成一个自我改进的循环,即越来越高质量和新颖的输出。
这些各司其职的智能体包括:
1)主管 (Supervisor) 智能体: 负责统筹管理研究计划,合理分配研究任务,并对计算资源进行有效配置。
2)生成智能体 (Generation Agent): 负责探索和分析大量科学文献以确定研究中的模式和差距,进行科学辩论,并根据现有知识生成初步的假设和方案。
3)反思智能体 (Reflection Agent): 扮演科学同行评审员,评估假设和负责评估假设的正确性、创新性、质量和可行性。
4)排序智能体 (Ranking Agent): 组织基于Elo的排名锦标赛,通过成对比较和科学辩论评估研究提案并进行优先级排序,优选最佳研究方向。
5)邻近性智能体 (Proximity Agent): 构建邻近性图,对相似的想法进行聚类,计算假设之间的相似性,实现去重后并有效探索假设。
6)进化智能体 (Evolution Agent): 迭代提炼并改进排名靠前的假设,融合现有观点,利用类比和文献,提高清晰度,以获得更深入的见解。
7)元审查智能体 (Meta-review Agent): 综合所有评审意见,找出重复出现的模式,优化智能体的性能以及将假设提炼成供科学家评估的综合研究概述来促进持续改进。
3、AI Co-Scientist 如何运作
科学家可以通过自然语言界面与 AI Co-Scientist 互动。他们可以设定研究目标、提供反馈、贡献想法,并指导系统的探索方向。AI Co-Scientist 通过不断地生成、审查、辩论和改进,为科学家们提供高质量的研究假设和方案,还会利用网络搜索、专业AI模型等工具来提高假设的质量。
具体运作流程:
1)科学家设定研究目标:科学家使用自然语言设定研究目标,例如“寻找治疗肝纤维化的新靶点”。
2)系统解析目标: AI Co-Scientist 将研究目标解析为具体的研究计划配置。
3)智能体协同工作:主管智能体 (Supervisor Agent) 将任务分配给不同的工作智能体 (Worker Agent), 并跟踪研究进展。
4)假设生成与评估:各个智能体协同工作,生成、评估、排序和改进研究假设。
5)结果呈现与反馈:系统向科学家呈现最佳的研究假设和实验方案, 科学家可以提供反馈意见, 进一步优化研究方向。
6)测试时间计算扩展:该系统利用测试时间计算扩展来迭代地推理、演化和改进输出. 关键的推理步骤包括基于自我博弈的科学辩论,以产生新的假设;用于假设比较的排名锦标赛;以及用于质量改进的演化过程。
**4、**AI驱动的科学推理
1)基于自我博弈的科学辩论
AI Co-Scientist 采用基于自我游戏的科学辩论作为假设生成和改进的手段。这种方法涉及 AI 系统与自身进行模拟辩论,探索各种结果和可能性。通过挑战自己的假设和捍卫对立的观点,AI Co-Scientist 可以识别其提案中的潜在弱点和优势。这种方法提高了生成的假设的质量,通过预测和解决潜在的批评,从而产生更全面和经过深思熟虑的科学建议。
2)假设排名锦标赛和进化过程
为了确保只进一步探索最有前途的科学思想,AI Co-Scientist 举办了假设排名比赛。这些锦标赛是竞争性评估过程,其中根据预定义的标准比较多个假设。AI 系统地对每个想法的优点进行排名和审查,并使用调查结果指导进一步改进。此外,AI 采用进化过程随着时间的推移改进假设,利用成功的想法来激发新的想法。这种严格的评估和迭代改进的结合促进了一个充满活力的研究环境,使 AI 能够保持在科学创新的前沿。
5、系统的持续自我评估方式
AI Co-Scientist 使用 Elo 评分系统 进行持续的自我评估。
1)Elo 评分系统:该系统借鉴了国际象棋的 Elo 评分系统, 用于评估和比较不同研究假设的质量。 在 “竞赛” 中表现更优的假设将获得更高的评分。由于Elo评分系统的核心作用,谷歌通过分析Elo自动评分与 GPQA 基准准确性在其钻石挑战题集上的一致性评估了较高的 Elo 评级是否与较高的输出质量相关性,发现Elo评分越高,正确答案的概率越高。另在在假设生成方面优于现有 AI 模型和人类专家。
2)测试时间计算:通过扩展测试时间计算,AI Co-Scientist 能够不断改进其假设质量。 随着计算资源的增加,系统能够进行更深入的推理和优化,从而获得更好的结果。
6、AI Co-Scientist的惊人成果
AI Co-Scientist 已在伦敦帝国理工学院、斯坦福大学等机构进行的多个生物医学领域测试中展现了强大的潜力:
1)药物再利用 (Drug Repurposing): 针对急性髓系白血病 (AML),AI Co-Scientist 提出了全新的药物再利用候选药物方案,随后的实验验证了这些提议,证实了建议的药物在临床相关浓度下抑制多种 AML 细胞系中的肿瘤活力。
2)靶点发现 (Novel Target Discovery): 在斯坦福大学推进的肝纤维化的治疗研究中,AI Co-Scientist 发现了新的表观遗传靶点,并验证了其在人类肝脏类器官中的抗纤维化活性。
3)抗菌素耐药性 (AMR) 机制解释: AI Co-Scientist 仅用两天时间,便重现了伦敦帝国理工学院科学家们耗时十年才发现的细菌基因转移机制,为对抗抗生素耐药性提供了新的思路。
7、AI Co-Scientist参与方式
谷歌通过 Trusted Tester 计划为研究机构提供对系统的访问
8、AI Co-Scientist是否代替科学家?
AI Co-Scientist 的定位是辅助科学家,而不是取代科学家。 它的作用是 处理数据密集型任务,例如文献回顾和数据分析, 从而解放科学家的时间,让他们能够专注于更具创造性的工作,例如:
1)创造力和直觉:虽然 AI 可以处理大量数据,但人类科学家带来的创造力和直觉可能会带来意想不到的突破。
2)道德考虑:人类对于驾驭复杂的科学研究伦理环境至关重要。
3)情境理解:科学家提供真实世界的背景信息,帮助指导 AI 的关注点并解释其结果。
4)试验设计:虽然AI可以建议,但人类专业知识对于微调实验设计至关重要。
5)同行评审和验证:科学界严格的同行评审过程仍然是可信研究的基石。
9、AI 在科学研究中的优势
AI Co-Scientist 在科学研究中具有以下优势:
1)加速科研进程:AI 驱动的数据分析可以加快通常需要数年的发现速度,缩短假设生成和验证的时间, 加速科学发现。
2)提高科研效率:自动化文献回顾和数据分析等繁琐的任务, 释放科学家的时间,这样科学家可以专注于实验验证和创新。
3)发现新的研究方向:通过分析大量数据,识别隐藏的模式和跨学科联系,发现人类难以察觉的模式和关联, 从而提出新的研究假设。
10、AI Co-Scientist 的挑战和局限性
尽管 AI Co-Scientist 具有巨大的潜力,但也面临着一些挑战和局限性
1)信息遗漏:在处理大量科学文献时,可能会遗漏一些重要的研究结果或关键见解。
2)事实核查:有时会产生不完全符合现有科学知识的推测。
3)数据偏见:AI模型的结论可能存在偏差或不完整.
4)安全性问题:需要防范不道德的研究查询和恶意用户意图.
5)依赖人类专业知识:仍然需要人类专家的监督和指导, 尤其是在实验设计和结果分析方面。
11、AI 辅助研究的未来展望
随着 AI 技术的不断发展, AI 辅助研究将在未来发挥更大的作用:
1)加速新药研发:缩短药物发现周期, 降低研发成本。
2)促进个性化医疗:根据个体差异定制治疗方案。
3)应对全球性挑战:加速在气候变化、 传染病等领域的科研突破。
4)除了生物医学研究之外,AI Co-Scientist 还可用于
-
市场营销:趋势预测、 消费者洞察、数据驱动的个性化营销、
-
金融:风险预测和评估、 量化交易、 欺诈检测等
-
环境科学:气候建模、 生态系统管理等
-
教育:支持精心设计个性化的课程和学习途径,以满足个别学生的需求
结语
谷歌的AI Co-Scientist多智能体,通过将人工智能的速度与人类专业知识的细微洞察力相结合,为曾经被认为不可能的突破铺平了道路,是AI与科学研究深度融合的一次大胆尝试。 它让我们看到了AI在加速科学发现方面的巨大潜力。AI Co-Scientist仍处于早期阶段,虽然目前还面临着一些挑战,相信在不久的将来,AI将成为科学家们不可或缺的科研伙伴,共同推动人类文明的进步。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。