多模态检索增强生成(mRAG)也有o1思考推理那味儿了!
阿里通义实验室新研究推出自适应规划的多模态检索智能体。
名叫OmniSearch,它能模拟人类解决问题的思维方式,将复杂问题逐步拆解进行智能检索规划。
直接看效果:
随便上传一张图,询问任何问题,OmniSearch都会进行一段“思考过程”,不仅会将复杂问题拆解检索,而且会根据当前检索结果和问题情境动态调整下一步检索策略。
相比传统mRAG受制于其静态的检索策略,这种设计不仅提高了检索效率,也显著增强了模型生成内容的准确性。
为评估OmniSearch,研究团队构建了全新Dyn-VQA数据集。
在一系列基准数据集上的实验中,OmniSearch展现了显著的性能优势。特别是在处理需要多步推理、多模态知识和快速变化答案的问题时,OmniSearch相较于现有的mRAG方法表现更为优异。
目前OmniSearch在魔搭社区还有demo可玩。
动态检索规划框架,打破传统mRAG局限
传统mRAG方法遵循固定的检索流程,典型的步骤如下:
- 输入转化:接收多模态输入(例如图像+文本问题),将图像转化为描述性文本(例如通过image caption模型)。
- 单一模态检索:将问题或描述性文本作为检索查询,向知识库发送单一模态检索请求(通常是文本检索)。
- 固定生成流程:将检索到的信息与原始问题结合,交由MLLM生成答案。
OmniSearch旨在解决传统mRAG方法的以下痛点:
- 静态检索策略的****局限:传统方法采用固定的两步检索流程,无法根据问题和检索内容动态调整检索路径,导致信息获取效率低下。
- 检索查询过载:单一检索查询往往包含了多个查询意图,反而会引入大量无关信息,干扰模型的推理过程。
为克服上述局限,OmniSearch引入了一种动态检索规划框架。
OmniSearch的核心架构包括:
- 规划智能体(Planning Agent):负责对原始问题进行逐步拆解,根据每个检索步骤的反馈决定下一步的子问题及检索策略。
- 检索器(Retriever):执行实际的检索任务,支持图像检索、文本检索以及跨模态检索。
- 子问题求解器(Sub-question Solver):对检索到的信息进行总结和解答,具备高度的可扩展性,可以与不同大小的多模态大语言模型集成。
- 迭代推理与检索(Iterative Reasoning and Retrieval):通过递归式的检索与推理流程,逐步接近问题的最终答案。
- 多模态特征的交互:有效处理文本、图像等多模态信息,灵活调整检索策略。
- 反馈循环机制(Feedback Loop):在每一步检索和推理后,反思当前的检索结果并决定下一步行动,以提高检索的精确度和有效性。
构建新数据集进行实验评估
为了更好地评估OmniSearch和其它mRAG方法的性能,研究团队构建了全新的Dyn-VQA数据集。Dyn-VQA包含1452个动态问题,涵盖了以下三种类型:
- 答案快速变化的问题:这类问题的背景知识不断更新,需要模型具备动态的再检索能力。例如,询问某位明星的最新电影票房,答案会随着时间的推移而发生变化。
- 多模态知识需求的问题:问题需要同时从多模态信息(如图像、文本等)中获取知识。例如,识别一张图片中的球员,并回答他的球队图标是什么。
- 多****跳问题:问题需要多个推理步骤,要求模型在检索后进行多步推理。
这些类型的问题相比传统的VQA数据集需要更复杂的检索流程,更考验多模态检索方法对复杂检索的规划能力。
在Dyn-VQA数据集上的表现
- 答案更新频率:对于答案快速变化的问题,OmniSearch的表现显著优于GPT-4V结合启发式mRAG方法,准确率提升了近88%。
- 多模态知识需求:OmniSearch能够有效地结合图像和文本进行检索,其在需要额外视觉知识的复杂问题上的表现远超现有模型,准确率提高了35%以上。
- 多跳推理问题:OmniSearch通过多次检索和动态规划,能够精确解决需要多步推理的问题,实验结果表明其在这类问题上的表现优于当前最先进的多模态模型,准确率提升了约35%。
在其它数据集上的表现
接近人类级别表现:
OmniSearch在大多数VQA任务上达到了接近人类水平的表现。例如,在VQAv2和A-OKVQA数据集中,OmniSearch的准确率分别达到了70.34和84.12,显著超越了传统mRAG方法。
复杂问题处理能力:
在更具挑战性的Dyn-VQA数据集上,OmniSearch通过多步检索策略显著提升了模型的表现,达到了50.03的F1-Recall评分,相比基于GPT-4V的传统两步检索方法提升了近14分。
模块化能力与可扩展性
OmniSearch可以灵活集成不同规模和类型的多模态大语言模型(MLLM)作为子问题求解器。
无论是开源模型(如Qwen-VL-Chat)还是闭源模型(如GPT-4V),OmniSearch都能通过动态规划与这些模型协作完成复杂问题的解决。
它的模块化设计允许根据任务需求选择最合适的模型,甚至在不同阶段调用不同大小的MLLM,以在性能和计算成本之间实现灵活平衡。
下面是OmniSearch和不同模型配合的实验结果:
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。