大型语言与视觉模型的参数高效微调综述

img

大型语言模型(LLMs)与视觉语言模型(VLMs)等大模型正在重塑人工智能的发展格局,推动了自然语言处理、计算机视觉以及多模态学习等领域的应用。然而,全面微调这类模型的成本仍然高昂,通常需要大量的计算资源、内存以及任务特定的数据。参数高效微调(PEFT)作为一种新兴的解决方案,通过仅更新模型的一小部分参数,使得大模型能够高效地适应下游任务。

本综述全面梳理了PEFT技术的发展脉络,重点探讨其动机、设计原则与实际效果。我们首先分析了传统微调所面临的资源与可及性挑战,指出过拟合、灾难性遗忘和参数低效等关键问题。接着,我们引入了一套结构化的PEFT方法分类体系,将现有技术划分为加性(additive)、选择性(selective)、重参数化(reparameterized)、混合式(hybrid)与统一式(unified)等五大框架,并系统性地比较了它们的机制与权衡。

除了分类,我们还深入探讨了PEFT技术在语言、视觉以及生成建模等不同领域中的应用表现,展示了其在降低资源消耗的同时依然保持优异性能的潜力。我们进一步讨论了PEFT在可扩展性、可解释性与鲁棒性方面仍面临的重要挑战,并提出未来的研究方向,包括联邦学习、领域自适应以及理论基础构建。

我们的目标是为读者提供对PEFT技术的统一理解,揭示其在推动大模型高效、实用与可持续发展中的关键作用。

img

1 引言

大型语言模型(LLMs)[601, 280] 与预训练语言模型(PLMs)[432, 436, 577, 719] 正在彻底改变人工智能的发展方向 [648, 122],推动自然语言处理(NLP)[96, 478]、计算机视觉(CV)[30, 707] 和多模态学习 [56, 187, 508] 等领域实现突破性进展。这些模型通常拥有数十亿参数,训练数据规模庞大,在文本生成 [455, 129]、语言翻译 [267, 10]、对话系统 [355, 555]、聊天机器人 [326, 571] 和内容摘要 [3, 55] 等应用中展现出前所未有的能力。它们重新定义了人工智能的边界 [497],并在学术界、工业界及实际应用中产生了深远影响 [205, 569]。

尽管具备巨大潜力,现代LLMs和PLMs的体量与复杂性仍对研究和产业界构成严峻挑战 [539, 802]。以LLama-3为例 [424, 333],这是当前最先进、计算要求最高的LLM之一 [152, 766]。其架构包含约3000亿个参数,采用复杂的多头注意力机制 [256, 170, 27, 514, 810],在多项任务上达到了SOTA水平 [507, 486]。然而,如此强大的模型,其微调过程极其复杂 [12, 127],需要动用庞大的计算基础设施,例如PB级存储系统、超高带宽内存接口,以及大量高性能GPU阵列 [380, 655]。有效地微调LLama-3 [152, 445],往往需配置数百乃至数千颗数据中心级GPU,常见如NVIDIA A100或H100 [242, 806]。尽管这些GPU配备数十GB的高带宽内存(HBM),仍不足以单独容纳LLama-3的全部参数、中间激活值和优化器状态。因此,必须通过多个GPU协同部署模型及其训练流程。为了确保训练效率,必须精心编排分布式训练范式 [454],包括张量并行 [665, 336, 656]、流水线并行 [260, 629, 481, 760] 和模型分片 [353, 374] 等策略,以保持吞吐率并实现负载均衡。这种基础设施的复杂性及其运维成本,极大限制了此类模型的微调可及性和可部署性 [151]。

传统微调方式 [368, 614] 需针对每个新任务更新模型的所有参数,在模型规模不断扩大的背景下,这种做法日益难以为继。解决这一问题对于发挥LLMs和PLMs的最大潜能至关重要 [613]。若能优化其部署与微调过程 [616, 534],不仅可降低计算开销,还能提升模型在多种任务中的适应性,确保其在不同场景中持续发挥作用 [582, 709]。缩小这一差距对于实现技术民主化具有重要意义,有助于资源有限的组织也能充分利用如LLama-3 [547, 382] 这类强大模型,并应用于新兴领域 [488, 232]。

本研究的核心问题是:LLMs 和 PLMs 的资源需求及微调挑战有哪些?又该如何应对以优化其部署与适配?这一问题旨在揭示现有方法的关键瓶颈,并探索提升效率与可用性的策略。

本研究的目标是系统分析LLMs、VLMs 与 LMMs [435, 538, 575] 所面临的计算与微调挑战,并识别优化其部署与微调的可行策略 [6, 99]。通过系统性的分析,本文旨在为研究人员与工程实践者提供可操作的指导,帮助他们突破现有模型的使用限制。

我们假设:要实现LLMs的最佳性能,需投入大量的计算资源与调优专业知识。然而,参数高效微调(PEFT)[520, 634, 311]等策略——只更新模型中一小部分参数——能够在大幅减少计算资源需求的同时,维持甚至提升模型性能 [734]。通过探索和验证这些方法,本研究希望推动对LLMs与PLMs更深入的理解与普及,为其在AI研究与应用中的高效使用奠定基础 [570, 207]。

PEFT方法 [384] 作为一种替代方案,通过显著减少可训练参数 [69, 628, 291],提升了微调过程的可访问性、可扩展性与可持续性。例如,adapter模块、prefix-tuning [444, 517, 76, 427]、LoRA(低秩适配)[17, 130, 335]、BitFit 以及 prompt tuning 等方法,在多项基准测试中展现出与完整微调相当甚至更优的性能,而资源消耗仅为其一小部分。PEFT尤其适用于实际应用中需处理多个任务、资源受限或需部署于边缘设备的场景。

尽管PEFT的应用愈发广泛,但当前仍缺乏系统性的理解框架,涉及其设计空间、方法权衡及跨模态适用性等方面。为填补这一空白,本综述系统回顾了语言与视觉模型中的PEFT方法 [735]。我们首先分析标准微调在计算与内存层面上的限制,并讨论其固有弊端。接着提出一套统一的分类体系,将PEFT方法划分为五大类:加性、选择性、重参数化、混合式与统一式方法,提供一个结构化视角用于理解与比较各类策略。

此外,我们评估了PEFT在NLP [286, 148]、计算机视觉、多模态任务与生成建模等多个领域中的应用,展示其在提升效率、促进泛化与实现更负责任AI方面的潜力。最后,本文还识别了该领域面临的关键挑战与开放问题,包括可解释性、理论基础构建与特定领域的适配 [68, 701],并提出未来可能的研究方向。

通过本综述,我们希望为研究者与从业者提供一份清晰、全面的PEFT方法指南,帮助他们构建更高效、可适应的AI系统。


2 主要贡献

本综述的主要贡献总结如下:

  • 全面的资源分析:深入探讨对大规模预训练模型(PLMs与LLMs)进行完整微调时的计算、内存与存储需求,重点分析研究者在基础设施受限条件下的实际挑战。
  • 微调局限性的批判性分析:讨论传统微调策略在低资源任务中过拟合、持续学习中的灾难性遗忘、参数更新冗余及可扩展性瓶颈等问题。
  • 统一的PEFT方法分类体系:提出一套将PEFT方法分为五大类(加性、选择性、重参数化、混合式、统一式)的结构化分类体系,用以明确比较不同设计策略及发现共性。
  • 代表性方法的对比分析:对LoRA、adapter、BitFit、prompt tuning 和 prefix-tuning 等主流方法进行横向评估,分析其参数效率、性能权衡与实现复杂度。
  • 跨领域应用调研:梳理PEFT在NLP、计算机视觉、多模态学习、语音和生成建模等领域的应用,突出其在鲁棒性、可迁移性和实际可用性方面的优势。
  • 专用场景下的适配研究:探索PEFT在持续学习、联邦学习、隐私保护微调、领域适应与低资源语言支持等新兴领域的应用前景。
  • 实证研究与趋势总结:总结近期实证研究与性能基准,揭示PEFT研究中的趋势与各方法适用条件。
  • 开放问题与未来方向:指出当前PEFT方法面临的难点,如可扩展性、可解释性欠缺、理论支持不足与标准化缺失,并呼吁构建具语义感知与架构敏感性的设计。
  • 可操作性总结与实用指南:为实践者提供实用指南,帮助他们依据资源预算、任务类型与模型结构,选择合适的PEFT方法。

本文结构安排如下:

第1节阐述研究背景与动机,聚焦大规模基础模型(如大语言模型LLM、视觉大模型VLM、多模态大模型LMM)的崛起趋势,以及参数高效微调(PEFT)方法在降低全参数微调高昂计算与资源成本方面的必要性。

第2节概述本综述的核心贡献,包括:建立PEFT方法系统分类体系、评估其效能折衷关系、深入探讨跨领域应用场景与局限性。

第3节阐释PEFT理论基础,涵盖注意力机制、自注意力、多头配置、Transformer架构等核心概念,结合复杂度与扩展性分析揭示全参数微调的低效本质。

第4节详述PEFT策略设计的关键架构与实践考量,包括设计目标、量化决策空间、任务自适应路由机制,以及面向多模态场景的内存-时间-能效优化策略。

第5节阐述核心PEFT方法体系,包含串/并行适配器的增量微调、面向任务特化的混合适配器、软提示调优,以及LoRA等重参数化方法,并探讨扩展规律、选择性微调和基于MoE的混合框架等前沿方向。

第6节通过GLUE等基准数据集实证评估PEFT方法,在NLP任务和大模型推理场景中揭示参数量与性能的权衡规律。

第7节探索PEFT技术在自然语言处理、计算机视觉、多模态学习及机器人等领域的应用实践,突出其跨域适应性与领域特异性优势。

第8节量化分析不同PEFT策略的计算、内存与扩展复杂度,从理论与实践双维度对比其效率特征。

第9节系统总结PEFT方法的优势与局限,重点讨论参数效率、适应能力、泛化性能及实际部署中的约束条件。

第10节指出现有PEFT方法的四大核心缺陷:启发式依赖、理论欠缺、可解释性不足与标准化缺失,强调发展语义感知与架构敏感的创新型设计之迫切性。

第11节展望六大前沿研究方向:参数影响力理论建模、分层调优策略、持续学习融合、可解释性框架、基准测试体系及隐私保护型PEFT。

第12节总结PEFT技术在推动大模型高效扩展应用中的关键作用,及其对构建资源友好型人工智能生态的战略意义。

img

img

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值