本文回顾了智能体系统中的常见模式。在描述这些系统时,将工作流(workflows)与智能体(Agent)区分开来是有帮助的。Anthropic 的文章《Building Effective Agents》给出了非常直观的解释:
工作流是通过预定义的代码路径来编排LLM和工具的系统。
智能体则是LLM动态指挥自身流程和工具使用的系统,它们在执行任务的过程中保持自主控制。
以下是一个简单的方式来可视化工作流和智能体的差异:
在构建智能体和工作流时,LangGraph 提供了多种优势:
- 状态持久化
- 流式输出
- 调试支持
- 部署支持
结构化输出和工具调用
**如下图所示,我们可以通过结构化输出和工具调用使 LLM 具备一些支持构建工作流和智能体的增强能力:
接下来我将使用阿里的千问模型演示一下结构化输出和工具调用。
提示链(Prompt Chaining)
在提示链中,每次 LLM 调用都会处理上一次调用的输出。
提示链将一个任务分解为一系列步骤,每个 LLM 调用处理上一个步骤的输出。你可以在任意中间步骤加入程序性检查(参见下图中的 “gate”),以确保整个过程仍处于正确轨道上。
何时使用这种工作流:
当一个任务可以被清晰、稳定地分解为若干固定子任务时,这种工作流非常理想。它的核心思想是通过将每次 LLM 调用简化为更小的任务,来在牺牲一定延迟的前提下换取更高的准确率。
并行处理(Parallelization)
在并行处理中,多个 LLM 会同时处理同一个任务,并通过程序将它们的输出聚合起来。这种工作流称为“并行处理”,主要有两种常见形式:
- 分段(Sectioning):将一个任务拆分成若干个相互独立的子任务,并行执行。
- 投票(Voting):对同一个任务执行多次,从而获得多样化的输出结果。
适用场景:
- 当任务可以拆分为可并行执行的子任务以提高速度,或为了获得更有信心的结果而需要多角度尝试时,并行处理非常有效。
- 对于涉及多个维度或因素的复杂任务,通常效果更好的是:让每个维度由单独的一次 LLM 调用来处理,这样可以让每次调用专注于特定方面。
路由(Routing)
路由会对输入进行分类,并将其导向一个专门的后续任务。这种工作流的优势在于能够实现关注点的分离,从而构建出更具针对性的提示词(prompt)。如果不使用这种工作流,为某一类输入进行优化可能会影响其他类型输入的表现。
何时使用这种工作流:
当任务较为复杂,且存在可以独立处理的不同类别时,路由是一个非常有效的选择。只要输入可以被准确分类(无论是由 LLM 还是传统的分类模型/算法完成),就可以使用这种工作流来提高整体处理效率和准确性。
协调者-工作者(*Orchestrator-Worker)*
在协调者-工作者模式的工作流中,协调者会将一个任务拆解,并将每个子任务分配给工作者来执行。
何时使用这种工作流:
这种工作流非常适用于无法预先确定子任务的复杂任务(例如编程任务中,涉及到的文件数量及其修改方式往往取决于具体任务)。虽然它在结构上与“并行处理”类似,但核心区别在于灵活性****:子任务并非预先定义,而是由协调者根据特定输入动态确定的。
由于协调者-工作者工作流非常常见,LangGraph 提供了 Send API 来支持这种模式。它允许你动态创建 worker 节点,并为每个 worker 发送特定的输入。每个 worker 都有自己的状态,而所有 worker 的输出会被写入一个共享状态键(shared state key),该键可供协调者图(orchestrator graph)访问。这使得协调者能够访问所有 worker 的输出,并将它们综合生成最终的结果。正如下方所示,我们会遍历一个 section 列表,并通过 Send 将每一个 section 发送给 worker 节点。
评估器-优化器(***Evaluator-Optimizer)***
在 Evaluator-Optimizer 工作流中,一个 LLM 负责生成回应,另一个则提供评估和反馈,二者循环往复。
适用场景:
这种工作流特别适合在具备明确评估标准、且通过反复改进可以带来明显提升的任务中使用。判断该工作流是否适配的两个标志是:
1. LLM 的输出在接受人类清晰反馈后能够显著改进;
2. LLM 本身也具备提供此类反馈的能力。
这种方式类似于一个人类写作者在打磨文稿过程中所进行的反复修订过程。
**智能体(**Agent)
Agent 通常是通过 LLM 基于环境反馈进行循环的工具调用(tool-calling)来执行任务的。
Agent 可以处理复杂任务,但它们的实现方式通常很直接。本质上,它们就是 LLM 在一个循环中根据环境反馈使用工具。因此,合理设计工具集及其文档是至关重要的。
什么时候使用 Agent:
当你面对的问题是开放式的,难以预先确定需要的步骤数,或者无法硬编码一条固定路径时,就适合使用 Agent。
此时,LLM 可能需要运行多轮决策过程,你也需要对它的自主决策能力具备一定信任。Agent 的自主性让它非常适合在受信任的环境中扩展任务规模。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。