一、医疗大模型应用场景
本次统计的288个医疗大模型、共814次场景提及频次中,涉及的12类应用场景中共涵盖56个细分领域,其中,临床专病辅助决策、预问诊、病历辅助生成、医学影像辅助诊断提及最多,均为医疗服务大类。
二、医疗大模型设计架构图
这张医疗大模型设计架构图从下到上分为三层,各层功能及组成如下:
1. 数据平台(底层支撑)
-
基础设施
:包含计算、存储、网络、安全等基础资源,提供硬件支撑。
-
大数据引擎(MRS)
:
-
-
数据处理
:分布式存储、列式数据库、分析型数据库、实时处理、批处理,支持海量数据存储与多维度分析。
-
-
-
功能引擎
:搜索引擎(快速检索)、工作流引擎(业务流程自动化)、权限管理(数据访问控制)。
-
-
-
云服务
:云数据库(GaussDB)、对象存储(OBS)、云容器引擎(CCE)、分布式缓存(Redis 版),利用云技术实现弹性扩展与高效数据管理。
-
2. 数据标准与安全体系(中间层管理)
-
数据标准体系
:
-
-
组织关联
:通过稽核规则、数据地图、数据血缘、数据资产探查,规范数据血缘关系与资产盘点,确保数据可追溯、可管理。
-
-
-
数据中心
:
-
-
-
-
萃取数据中心
:整合住院、门诊、临床业务指标,构建患者健康画像和专科病种指标库,提炼核心业务数据。
-
-
-
-
-
主题数据中心
:分为临床、运营、科研数据中心,按业务主题分类存储,支撑不同场景的数据分析与应用。
-
-
-
数据安全体系
:
-
- 涵盖数据标准管理(规范数据格式与定义)、数据治理管理(清洗、整合、监控)、建模设计管理(数据模型构建)、数据安全管理(加密、访问控制等),确保数据质量与安全。
3. 智慧应用(上层业务)
-
智慧医疗
:聚焦诊疗核心,包括检查检验、电子病历、临床诊疗、智能审方、临床辅助、DRG/DIP(医保支付改革支持),提升诊疗效率与精准度。
-
智慧服务
:优化患者体验,涵盖互联网服务、在线诊疗、诊前 / 诊中服务、统一支付、处方流转,实现全流程数字化服务。
-
智慧管理
:支撑医院运营,包括医疗管理、人力管理、绩效考核、决策支持、物资管理、精细化管理,提升医院管理的智能化与精细化。
-
医疗业务协调
:促进跨机构 / 业务协同,如双向转诊、远程会诊 / 医疗 / 教学、检查检验互认、科研教学,打破医疗资源壁垒,推动医疗生态协同。
架构总结
-
分层设计
:底层(数据平台)提供技术支撑,中间层(数据管理)确保数据规范与安全,上层(智慧应用)落地业务场景,形成 “数据驱动 - 管理赋能 - 业务创新” 的闭环。
-
核心价值
:通过整合医疗数据(临床、运营、科研),利用大数据与云技术,实现医疗服务、管理、协同的智能化升级,提升医疗效率、质量与资源整合能力,同时保障数据安全与标准规范。
-
应用场景
:覆盖诊疗、服务、管理、协同全链条,适用于医院数字化转型、区域医疗协同、智慧医疗生态构建等场景。
该架构体现了医疗大数据从存储、处理、管理到应用的全生命周期设计,为医疗行业的智能化发展提供了系统性解决方案。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。