2021-06-28

完成石子合并问题的求解

**问题描述:**在一个圆形操场的四周摆放着n堆石子。现要将石子有次序地合并成一堆。规定每次只能选相邻的2 堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的得分。试设计一个算法,计算出将n堆石子合并成一堆的最小得分和最大得分。
**要求:**对于任意给定的n堆石子,计算合并成一堆的最小得分和最大得分。
**遇到的问题:**在写动态转移方程时,要确定有哪几个阶段和决策
阶段:以归并石子的长度为阶段,一共有n-1个阶段和决策。
状态:
当归并长度为2时,有n-1个状态;  当归并长度为3时,有n-2个状态;  
当归并长度为n时,有1个状态。
决策:
当归并长度为2时,有1个决策;
当归并长度为3时,有2个决策;   当归并长度为n时,有n-1个决策。
该问题也可用穷举法求解,即逐一列举石子归并问题所涉及的所有情形,并根据问题提出的条件检验哪些是问题的解。
这次课程设计的完成,让我在老师的身上我们学也到很多实用的知识,在次我们表示感谢!同时,对给过我帮忙的所有同学和各位指导老师再次表示忠心的感谢! 此次课程设计,学到了很多课内学不到的东西。
*#include<bits/stdc++.h>
#define inf 100000000
using namespace std;
int n,Stone[300],Min[300][300],Max[300][300],sum[300];

int main()
{
cout<<"请输入石子堆的个数: "<<endl;
cin>>n;
cout<<"请输入每个石子堆的重量: "<<endl;
for(int i=1;i<=n;i++){
cin>>Stone[i];
Stone[i+n]=Stone[i];
}
for(int i=1;i<=2n;i++)
{
sum[i]=sum[i-1]+Stone[i];
}
for(int len=1;len<n;len++){
for(int i=1;i<2
n;i++){
int j=i+len;
if(j>=2n)
break;
Min[i][j]=inf;
for(int t=i;t<j;t++)
{
Min[i][j]=min(Min[i][j],Min[i][t]+Min[t+1][j]+sum[j]-sum[i-1]);
Max[i][j]=max(Max[i][j],Max[i][t]+Max[t+1][j]+sum[j]-sum[i-1]);
}
}
}
int mn=inf,mx=0;
for(int i=1;i<n;i++){
mn=min(mn,Min[i][i+n-1]);
mx=max(mx,Max[i][i+n-1]);
}
cout<<"合并成一堆的最小得分为: "<<mn<<endl;
cout<<"合并成一堆的最大得分为: "<<mx<<endl;
return 0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值