华东师范大学的老师,上课已经用上了大模型

人在华东师范大学,上课、教学已经用上了大模型

例如丢一本《信息系统概论》进去,就可以开始提问了(哪里不会问哪里):

讲解一下des加密算法。

想要做题来巩固知识点?不用再搜往期试卷了。

直接跟大模型说一声:出题

在这里插入图片描述

而且不再是一个班级一个助教,现在有了大模型,人均一个“助教”不是梦。

只需要填写课程的基本信息、上传教材,它就能自动生成教学大纲

即使是视频课程,大模型也能直接把视频大纲罗列出来,并且还可以按照知识点进行搜索

课程视频的要点内容,用知识图谱的方式打开同样不在话下:

当然,编程方面也是信手拈来,包括:

代码生成代码解析代码优化代码检错语言转换格式整理

这便是华东师范大学为学生专门打造的**“给所有人的终身教育大模型一体机”**,主打的就是让上课、学习的效率Pro Max。

而且这种fashion的上课、学习方式,还是被**央视“点赞”**过的哦~

但有一说一,这也还仅仅是大模型给华东师范大学带来的改变之一。

教育不止要by AI,还要for AI

AI与教育相遇,可不止是多了一些神奇的教学工具这么简单,更是给教学方式、甚至教育理念带来了新的活力。

华东师范大学数据科学与工程学院的王伟教授,就非常重视人工智能时代下对学生能力的培养。

在王伟教授看来,用AI来赋能教学,改变传统教学模式固然重要,但同时也要培养学生的AI素养和能力。

据此,他提出**“数字素养+智慧教育**”的综合解决方案。

数字素养,对今天的华东师范大学师生而言,也就是Education for AI

它可进一步拆解成通用数字能力、数据分析、编程思维、数字思维与问题求解等维度,并融入到不同课程中。

面向全校学生开设分层次、多方向的人工智能(AI)相关课程,覆盖编程思维、数据分析、AI原理等内容,自2019年起就已开始逐步推广。重点是通过实践项目,让学生学以致用。

智慧教育,在今天的数字时代,也就是Education by AI

除了前文重点介绍过的教育大模型一体机之外,华东师范大学还有大规模个性化在线智慧学习平台 “水杉在线”,以及利用数据驱动的方法对教学过程和教学质量作评测。

在所有措施中,王伟教授认为非常重要的一点就是培养学生的**“数字思维”**,意味着学生需要学习如何通过数据来洞察问题、提出假设并验证解决方案。

这当中最为关键的便是编程思维,编程不仅仅是写代码,更是一种思维训练,教会学生如何将复杂问题分解为更小、更易于管理的部分,并通过算法来解决这些问题。

与此同时,华东师范大学的周傲英教授则从更宏观的角度诠释了人工智能时代的数字素养教育。

从互联网、大数据到大模型这些年的发展中可以看出,数据已成为继土地、劳动力、资本和企业家才能之后的全新生产要素,将对社会发展和生产力提升产生重大影响。

因此,数字素养教育的前提,就是要充分认识到数据的重要性,那么数据与之前的生产要素相比有什么独特性呢?

周傲英教授提出,数据具有非独占性、非排他性和非稀缺性。海量数据的产生和数据处理技术的飞速进步,驱动了人工智能等新兴技术的崛起。

科学研究作为认识世界的重要手段,其范式也受到数据和技术发展的影响。原有很多科学理论是建立在长期观察、抽象归纳的基础上。但在大数据时代,研究者往往先有海量的数据,再通过机器学习等技术从数据中发现规律和洞见,用数据驱动科学发现。

据此,周傲英教授提出了一个深刻的观点,即**“技术在倒逼科学”**。

在快速发展的人工智能等领域,技术进步似乎超前于我们对其科学原理的理解,导致了一种现象:我们依赖于技术的有效性,却对其背后的科学逻辑知之甚少。

周傲英教授称这种技术先行的模式对科学教育和研究提出了新的挑战,新的经验主义呼唤新的理性主义,也就是心得科学。只有把应用场景+科技创新+产业发展结合起来,才能一体化进步。

由此可见,AI对于华东师范大学来说不仅仅是教育方式上的转型,更是一种思维上的变革,包括:

  • 教师教学角色转变:从讲授者向引导者、辅助者转变

  • 学生学习方式转变:大规模个性化学习将成为现实

  • 资源获取方式转变:从教师准备课程资源向智能化的跨学科海量资源的智能聚合转变

  • 教学评价方式转变:个性化教学与学习评估成为可能

尤其是在大模型热潮的当下,AIGC更是会成为教学效能的增倍器

总而言之,现在的华东师范大学,不论是教书或育人,都很AI很大模型

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值