SMART-SLIC框架:旨在将RAG结合向量存储(Vector Stores)、知识图谱(Knowledge Graphs)和张量分解(Tensor Factorization)来增强特定领域的大型语言模型(LLMs)的性能。
SMART-SLIC系统框架
SMART-SLIC框架的关键组成部分和操作流程:包括构建特定领域的数据集、知识图谱本体论、向量存储以及检索增强生成(RAG)过程:
A. 特定领域的数据集:
-
项目从由主题专家(SMEs)选定的核心文档开始,这些文档代表了想要构建数据集的特定领域。
-
利用SCOPUS、Semantic Scholar和OSTI等授权API,通过引用和参考文献网络扩展数据集。
-
为了保持核心数据集的中心质量和主题一致性,采用了几种修剪策略来删除与核心文档无关的文档。
B. 降维:
- 通过非负张量分解从数据集中提取潜在结构,使用T-ELF工具进行文档聚类,并自动确定最佳聚类数量。
C. 知识图谱本体论:
-
将T-ELF提取的特征和文档元数据映射成一系列头、实体和尾关系,形成方向三元组,然后注入Neo4j知识图谱。
-
知识图谱包含了文档元数据以及从文档中提取的潜在特征。
D. 向量存储组装:
-
将文档向量化后存入Milvus向量数据库,以支持RAG过程。
-
文档的全文被分割成较小的段落,并且每个段落都被赋予一个整数ID,以指示其在原始文档中的位置。
E. 检索增强生成RAG:
- SMART-SLIC RAG实现:
SMART-SLIC框架中的RAG实现依赖于知识图谱(KG)和向量存储(VS)来提供结构化和非结构化的领域特定信息。
当用户提出问题时,LLM首先将查询转化为向量嵌入,然后与现有文本进行比较以找到最相似的文本。
检索到的信息被添加到原始查询中,LLM利用这些上下文信息生成相关答案。
最后,LLM以自然语言构建最终答案,向用户解释答案。
RAG流程图
- 问题路由流程:
SMART-SLIC采用问题路由流程来确定用户查询的类型,并根据查询类型选择相应的处理工具和流程。
问题分为“通用查询”和“特定文档查询”。通用查询调用ReAct Agent处理流程。
特定文档查询则调用检索查询或合成查询。
理解用户的问题对于将信息路由到适当的工具集和后续流程至关重要。
用户查询路由概览
- ReAct Agent处理流程:
ReAct Agent处理流程包括ReAct Agent、工具执行器和结束节点。
ReAct Agent负责收集输入、做出可操作的决策并解释结果。
工具执行器接收来自代理的工具名称和输入参数,调用相应的功能并返回输出。
结束节点标志着Reason-Act循环的完成,将最终输出返回给用户。
ReAct Agent的节点和工具
SMART-SLIC框架在实际应用中的表现,并提供了评估结果:
A. 数据集:
-
初始选择了30篇由主题专家(SME)挑选的、专注于大规模恶意软件分析和异常检测领域的文档作为核心文档。
-
通过引用和参考文献网络对数据集进行了两次扩展,最终得到8790篇科学出版物构成的数据集。
B. 潜在特征提取:
-
使用T-ELF对数据集进行张量分解,确定了25个主题聚类作为所有评估k值中的最佳划分。
-
分解过程使用了高性能计算资源,整个过程大约耗时2小时。
C. 向量存储:
-
将8790篇文档向量化后存入Milvus向量数据库。
-
其中22%的文档有全文文本,这些也被向量化并存入Milvus。
D. 知识图谱:
-
从T-ELF输出的25个聚类中,格式化数据为1,457,534个三元组,并注入知识图谱。
-
知识图谱中包含了321,122个节点和1,136,412条边关系。
知识图谱Schema
关键词“网络犯罪”的图形搜索。返回单个关键词(绿色)以及相关联的文档(浅蓝色)。文档还链接了附属机构(黄色)和机构所在的国家(红色)。
E. 问答验证:
-
使用文档特定问题和主题特定问题对系统进行了零样本条件下的问答测试。
-
比较了使用GPT-4-instruct模型在有无RAG框架的情况下的回答性能。
-
结果显示,使用RAG时,GPT-4-instruct模型回答问题的准确率达到97%,而没有使用RAG时,模型有40%的问题未回答,回答的问题准确率仅为20%。
F. 复杂问题解答:
-
还测试了更复杂的问题,这些问题需要通过各种检索方法进行彻底搜索。
-
SME提出了几个问题,使用SMART-SLIC RAG流程得到的回答与SME选择的DOI一致,证明了代理在检索相关来源方面的准确性。
-
没有使用RAG时,LLM的回答不准确,存在编造答案的情况,且未提供DOI引用,降低了信息的可信度。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。