目前AI落地应用的发展,可以基于“大模型+知识库+工作流=智能体”的思路来分析。这个框架在多个领域已有实践,但也面临挑战。以下是具体分析:
- 当前AI落地的主要模式
(1)大模型(基础能力)
作用:提供语言理解、生成、推理等通用能力。
现状:
大模型(如GPT-4、Claude、DeepSeek等)已成为AI应用的核心引擎。
开源模型(如Llama、Mistral)降低了企业部署门槛。
但纯大模型存在幻觉、数据时效性不足等问题,需结合其他模块优化。
(2)知识库(领域增强)
作用:补充专业数据,解决大模型“泛而不精”的问题。
现状:
企业通过RAG(检索增强生成)、微调等方式将行业数据融入大模型。
例如:
医疗AI:结合医学文献、诊疗指南,提供精准诊断建议。
金融AI:整合市场数据、研报,生成投资分析。
挑战:知识更新滞后、数据质量参差不齐。
(3)工作流(任务拆解)
作用:将复杂任务分解为可执行的步骤,确保逻辑合理。
现状:
智能体(Agent)通过规划、工具调用(如API)、多轮交互完成任务。
例如:
客服AI:先理解问题→检索知识库→生成回复→确认用户满意度。
编程AI:拆解需求→写代码→调试→优化。
挑战:流程设计依赖人工经验,动态调整能力有限。
- 典型落地场景
(1)企业服务
智能客服:大模型处理自然语言对话,知识库存储产品信息,工作流实现工单流转。
合同审核:大模型解析文本,知识库提供法律条款,工作流标记风险点并生成报告。
(2)垂直行业
医疗:大模型解读患者描述,知识库关联病例库,工作流推荐检查方案。
教育:大模型批改作文,知识库存储知识点,工作流生成个性化学习计划。
(3)个人效率
AI助手:整合日历、邮件、文档等工具,通过工作流自动安排会议、总结邮件。
- 当前挑战
数据质量
知识库依赖企业数据,但许多行业数据分散、非结构化(如纸质档案),清洗成本高。
工作流灵活性
固定流程难以应对突发情况(如用户突然改变需求),需更强的动态规划能力。
成本与ROI
大模型推理成本高,中小企业可能更倾向采购现成SaaS而非自研智能体。
伦理与合规
医疗、金融等领域需严格审核AI输出,避免错误建议导致法律风险。
- 未来发展方向
更轻量化的部署
小型领域模型(如手机端AI)降低计算成本,结合云端知识库实现实时更新。
自动化工作流设计
用AI自动生成和优化任务流程(如AutoGPT雏形),减少人工配置。
多模态融合
结合文本、图像、语音(如工厂质检AI同时分析图片和维修记录)。
合规框架完善
建立行业标准,确保AI输出可解释、可追溯(如金融AI的决策日志)。
总结
“大模型+知识库+工作流”确实是当前AI落地的核心思路,但需根据场景调整三者权重。例如:
标准化场景(如客服):可优先依赖工作流,确保稳定性。
创新场景(如科研辅助):需强化大模型的推理能力,知识库动态更新。
未来智能体的竞争力将取决于:
数据鲜度 × 流程灵活性 × 成本控制,而不仅是技术堆砌。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。