今天是高考的第一天,先祝福各位考生们考试顺利发挥超常考得全会写得全对啊!!
高考第一门的语文题目已经出来了,其中高考作文每年都是大家讨论最多的话题!
今年的高考作文题目有这些:
其中新课标I卷的作文题很新啊,**直指人工智能!**题目大概意思是:AI现在这么猛,问题都被随手解答了,那我们的问题会不会越来越少呢?
这么难的AI题,那我不得难为难为AI!我把作文题原模原样一波丢给了各家AI,**让我们来看看这些人工智能的高考作文实力!**各位感受下如果你是阅卷老师,给几分
- 智谱清言 -
先看看我们熟悉的智谱清言,让这首位考生来言一言。我问了AI有没有让问题变少,AI说没有,问题越来越多了。而且开口第一段就来大的,直面人类欲望的深渊,欲望无限、求知无限!
后面又列举了好多问题,比如筛选信息是问题、人能力退化是问题,AI本身也有问题…你小子还挺直言不讳,狠起来连自己都刺啊!
看完觉得确实哪哪都是问题!像信息过载、安全隐私这些都蛮切实的,不愧是智谱清言,确实很质朴,不来虚的!
- Kimi -
下面进入考场的是Kimi!你别说Kimi还挺机灵,整了个带冒号的标题,每段开头都是标准短句,感觉是做过几套模拟卷的一下子吸引了阅卷老师的眼球:
这篇作文也提到了答案虽多,但选起来很难,看来不止我搜资料难,AI们也觉得筛选信息很难啊!
最后结论也是人类的问题不会变少,顺便还提倡大家拥抱AI,真是个小机灵鬼
- 秘塔写作猫 -
秘塔写作猫在作答中先把题目又论述了一遍,也是考试常用技能,专业啊!回答还列出了参考文献,虽然我们的考试中禁止联网,但考虑到这是AI考生,就不断网了。
这位考生的用词都很高大专业,给人一种不明觉厉的感觉!最后人机关系的重塑,这几个字一出来就给我震住了……各位阅卷老师们觉得如何呢?
- 飞书AI -
飞书的AI有写作功能,这波也来考场上练练手!结果出来还挺有文采,用了好多名言名句,感觉背过高考作文名言300句,有备而来啊!
文心一言
再来看文心一言的作文水平!我感觉还挺有文采的,开头第一段应该能放进高考作文精选。
结尾还升华到了人类文明,AI,心怀大爱
- chatGPT -
这次我们还找来一位国外考生来“高考”,chatGPT风吹了这么久,今天就来高考作文场上来见真章。
小chat的观点是AI会帮助人们快速、广泛的学到知识,而人的知识越多就越爱提问,“我唯一知道的就是我一无所知”,所以人的问题不会变少的!放心!
我真的被说服了,有两把刷子啊!
以上就是我浅浅问了几个AI高考作文题的结果了!需要说明的是AI问答中的提示词很重要,我这次都是把作文题原封不动粘过去,没有任何多余的指令,可能让AI结果输出有偏差。难为各位考生们了
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。