在金融领域,多模态大语言模型的应用具有巨大的潜力和价值。这些模型能够处理并理解来自不同来源的信息,如文本、图像、音频等,从而提供更全面、更深入的金融分析和决策支持。
具体来说,金融领域应用多模态大语言模型的方式包括但不限于:
金融报告分析:多模态大语言模型可以自动分析和解读复杂的金融报告,如年报、季报等,提取关键信息并生成简洁的摘要或分析报告。这有助于投资者和金融机构更快速地了解公司的财务状况和经营情况。
市场趋势预测:模型可以通过分析历史数据、市场新闻、社交媒体情绪等多模态信息,预测股票价格、汇率、债券收益率等金融市场的走势。这有助于投资者制定更科学的投资策略,降低投资风险。
信用评估:在信贷审批过程中,多模态大语言模型可以综合评估申请人的信用记录、财务状况、社交网络等多维度信息,提供更准确、更全面的信用评估结果。这有助于金融机构降低信贷风险,提高贷款审批效率。
投资策略推荐:模型可以根据投资者的风险偏好、投资目标等个性化需求,推荐合适的投资产品和投资策略。这有助于投资者实现资产的合理配置和长期增值。
金融监管:多模态大语言模型还可以应用于金融监管领域,通过实时监测和分析金融市场的动态和异常情况,及时发现和预警潜在风险。这有助于监管机构及时采取措施,维护金融市场的稳定和安全。
多模态大语言模型在金融领域的应用,确实面临一些其他领域所不具备的独特挑战。以下是一些主要的挑战:
数据安全和隐私保护:金融领域涉及到大量的敏感信息,如客户身份信息、交易数据等。多模态大语言模型在处理这些数据时,必须严格遵守数据安全和隐私保护的规定,防止信息泄露和滥用。
模型的准确性和可靠性:金融决策往往涉及大量的资金和风险,因此多模态大语言模型必须具备极高的准确性和可靠性。这要求模型在训练过程中充分考虑到各种可能的情况和因素,确保预测和分析结果的准确性。
实时性和动态性:金融市场是一个高度动态和变化的环境,多模态大语言模型需要能够实时地处理和分析各种数据和信息,以便及时捕捉市场的变化和趋势。同时,模型还需要具备动态调整和优化的能力,以适应市场的不断变化。
合规性和监管要求:金融领域受到严格的监管和合规要求,多模态大语言模型在应用于金融领域时,必须遵守相关的法律法规和监管要求。这包括数据的收集、存储、处理和使用等方面,以确保合规性和避免潜在的法律风险。
跨领域的知识融合:金融领域涉及到多个领域的知识,如经济、法律、数学等。多模态大语言模型需要能够融合不同领域的知识,以便更准确地理解和分析金融问题。这要求模型具备跨领域的知识表示和推理能力。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。