少即是多:利用AI进行短期股票预测,提高盈利,降低风险

LESS IS MORE: AI DECISION-MAKING USING DYNAMIC DEEP NEURAL NETWORKS FOR SHORT-TERM STOCK INDEX PREDICTION

本文介绍了一种基于多智能体深度学习的方法,称为Model A,用于交易美国标普500指数期货市场。Model A在关键绩效指标上优于被动投资,并且在美国大型主动基金经理的前四分位中。

Model A的年化回报是被动策略的4.82倍,盈利准确率比被动策略高出17.5%。所有测试模型与被动基准的相关性都很低。Model A不仅是实验模型,还作为Plotinus Asset Management主动交易的非相关Alpha控制风险策略的一部分。

论文地址:https://arxiv.org/pdf/2408.11740v1

摘要

本文介绍了一种基于多智能体深度学习的方法,用于交易美国标普500指数期货市场。该方法(称为Model A)是在现有的机器学习模型基础上创新的,通过对市场价格和相关衍生品进行采样,决定投资应该是多头/空头还是关闭(零头寸),并进行日常决策。结果表明,Model A在关键绩效指标上优于被动投资,并且在美国大型主动基金经理的前四分位中。Model A还在历史测试中优于三种机器学习分类比较器。我们观察到,Model A非常高效(做得更少,获得更多),市场暴露仅为41.95%,相比被动投资的100%市场暴露,提供了更高的盈利和降低的风险。

在这里插入图片描述

简介

机器学习在交易领域的应用是一个活跃的研究领域,但是面临着许多挑战,包括预测未来价格、考虑金融变量、模型参数、波动性和非稳态性等问题。大部分基金的目标是持续优于被动投资基准,如S&P 500指数。研究选择了S&P 500指数作为可交易工具,并以S&P 500期货作为被动投资基准。

方法

华尔街交易日从开盘到收盘(09:30 - 16:00 ET)代表了每日标普500期货市场中交易量最活跃的部分,但在过去二十年中,纽约交易日仅贡献了标普500期货总收益的20.5%。传统的被动交易表现不佳,因此提出了采用主动方法来提高收益。大数据方法可能提供有用的交易信号解决方案,但难以满足投资者对一致、长期低风险过程的需求。因此,引入了“小数据”方法来展示如何在实践中运作。数据被限制为标准交易所数据,包括CME E-mini标普500期货合约价格和成交量数据,以及芝加哥期权交易所波动率指数价格数据。

LSTM

使用长短时记忆网络(LSTM)进行二元分类交易期货合约模型。选择了三个输入变量:ES期货合约价格、CBOE波动率指数和前一天交易的期货合约交易量。模型的目标是训练网络预测价格上涨或下跌,并在每个交易日适当地开仓。经过实验和排列组合,选择了20天的序列长度。模型在训练过程中收敛迅速,与被动投资相比,该方法是盈利的,但产生了较高的波动性。

梯度增强树和随机森林

在股市预测方面,GBT和RF的成功率不一。本文使用了一种决策树模型和一种随机森林模型。使用决策树模型来预测标普500指数在白天交易中的价格变化,以及如何根据预测结果选择做多或做空的决策。模型的输入特征包括ES期货合约价格数据和VIX波动率指数价格数据。目标是预测白天交易的正收益或负收益。

动态深度神经网络-Model A

Model A是使用有限数量的标准金融数据并应用强化学习而构建的,使用两个代理自主行动,在相同的数据环境中,每个代理的任务是通过与环境和伙伴代理交互来优化自己的短期回报。在我们提出的模型版本中,数据环境仅限于:

  • a) CME E-mini标准普尔500期货合约(股票代码ES)价格数据(开盘、高、低、收盘)

  • b) CBOE波动率指数(股票代码VIX)价格数据(开盘、高、低、收盘)。

Model A的架构是一个多智能体系统,由深度神经网络和决策树混合而成。在承认市场波动的过程中,我们希望模型能够超越时间序列数据输入的限制,并开发对市场条件的上下文理解,而不是依赖于时间的(如趋势或动量)。为了做到这一点,我们让模型首先开发一个决策环境,然后能够不断地重新评估它。这种背景重新评估每24小时进行一次,目的是在白天交易期间成功确定每天的市场方向。我们使用了250天的样本量,并对一天的窗口进行了(闭环)预测。同时,决策树代理使用相同的输入变量,但使用较小的特征样本量,但使用20天的序列,为模型提供短期市场行为(大约一个交易月)的简化评估,以协助决策过程。

该模型创建了一个决策(长期、短期或封闭),并通过一个行动来补充这个决策。例如,如果给定的决策是做多/做空,则动作可以为零,从而有效地将做多/做空修正为闭合位置。因此,A模型实际上有三个分类输出:长、短和封闭。相反,我们首先使用与混淆矩阵相关的传统精度度量来评估分类性能。在下面的讨论中,观察到的正数被指定为日间正数利润,而亏损被标记为观察到的负数。因此,真正的正数是预测正确的正(观察到的)利润。测试期为2018年1月初至2023年12月底,共6年,N = 1509次观测。

结果

表1展示了分类准确性/精度结果,passive模型的准确率为54.61%,但机器学习模型在负面预测方面表现较弱。利润的随机性使得盈利与准确性无关,passive模型虽然准确率高于其他模型,但盈利较低。Model A在负面预测方面表现较好,且具有较低的波动性和更好的盈利能力。LSTM模型具有较高的回报率,但伴随着更高的波动性和更深的回撤。采用零头寸策略可以减少交易成本和风险,同时获得更好的利润。时间对于实际投资非常重要,投资模型的表现存在波动,Model A表现出稳定的超越passive模型的盈利能力。

结果表明,Model A在短期内表现最好,具有较低的波动性和较高的准确性和利润率。此外,Model A的交易决策更加谨慎,只在有足够的可能性时才进行交易,因此其总市场暴露度较低。这种策略可以在不暴露于市场风险的情况下获得更高的回报率。

在这里插入图片描述

在这里插入图片描述

总结

使用动态深度神经网络方法Model A,即使数据输入非常有限,也可以显著优于被动的标普500基准。Model A选择更多地决定不交易而不是交易,这种谨慎性在其他分类方法中很难实现。该方法展示了对美国股指期货短期方向预测的强大结果,表明小数据的动态深度神经网络有潜力成为基金经理部署创新AI交易决策方法的方向。Model A的年化回报是被动策略的4.82倍,盈利准确率比被动策略高出17.5%。所有测试模型与被动基准的相关性都很低。Model A不仅是实验模型,还作为Plotinus Asset Management主动交易的非相关Alpha控制风险策略的一部分。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

股神--人工智能股票预测系统是专门为股票投资者开发的一套全新的基于人工智能技术的股票趋势预测软件平台。该软件以基因演化算法(GP)为内核对股票交易历史数据进行自动建模和学习,挖掘出股票交易大数据中隐藏的行为规律,并以此为依据对下一个股票日的最高价和最低价的涨跌趋势进行预测分析。该软件能够帮助您了解何时进入股市,何时退出股市,并在最佳的时机买进或卖出股票,从而获取最大的利润和收益。 支持6种典型的股票类别:上证指数、上证A股、上证B股、深证指数、深证A股和深证B股。 精确的股票预测信息(如上涨、下跌或持平)和买卖推荐信息(如买入、卖出、持股以及买入价、卖出价等)。 基因演化算法参数支持用户自定义,默认设置为种群大小:30,杂交概率:0.8,变异概率:0.1,最大运行代数:1000。 支持批量操作,如股票批量评测、模型批量训练、股票批量预测、批量增加股票代码、批量添加/撤销我的股票池等。 对大股票而言,最高价与最低价的涨跌趋势预测准确度达60%-80%;对部分股票而言,预测准确度最高可达90%。 仅需简单的操作即可完成股票评测、智能选股、模型训练以及股票预测等功能。 系统主界面支持从云数据库和本地数据库自动更新最优股票预测信息。 支持流行的微软Windows操作系统,如Windows 98/Me/2000/XP/Vista/7。 股神--人工智能股票预测系统既适用于专业的股票投资者,也适用于股票初学者。您可以通过股神系统轻轻松松地完成股票评测、智能选股、模型训练以及股票预测等功能,所有操作简单易懂,软件界面友好大方。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值