周鸿祎金句:AI不是替代人类,而是让普通人拥有超能力。现在看不懂、看不清、看不起,未来就看不见了。
https://new.pmmaster.cc/15578.html
PPT下载
一、为什么说DeepSeek是AI界的"iPhone时刻"?
1.从实验室到你家客厅
就像当年电脑从科研机构走进千家万户,DeepSeek让顶尖AI技术不再是大厂专属。企业无需百万级投入,单台电脑就能部署AI大脑。
2.免费开源=人人都有超能力
开源策略打破技术壁垒,创业公司能直接使用世界顶级模型,就像用安卓系统开发APP一样简单。
3.成本暴跌240倍
过去训练AI要烧掉一套房,现在成本相当于买部手机。中小企业也能用AI改造业务流程,消除数字鸿沟。
二、DeepSeek的三大杀手锏
-
慢思考黑科技
传统AI像背题库的学霸,DeepSeek像会解奥数题的天才。通过"自我博弈"强化学习,能拆解复杂问题,搞定需要多步推理的任务。
-
百业千行变形记
已落地钢铁制造142个场景:从高炉温度监测到钢板质检,AI替代肉眼判断,错误率降90%,效率提升10倍。
-
安全可控的AI员工
本地部署不联网,企业数据不出门。能记住业务流程,调用内部系统,成为24小时在线的数字白领。
三、企业落地的四步走
-
场景拆解
别想"用AI改造整个公司",先找重复性高、容错率低的环节。例如客服重复问答、报表自动生成。
-
知识喂养
把员工经验、行业报告、操作手册"喂"给AI,就像培养管培生。支持文档/图片/视频多模态学习。
-
智能体组装
用AI搭建数字流水线:招聘机器人自动筛简历+面试评估;营销AI分析数据+生成方案+执行投放。
-
持续进化
开源生态提供现成工具链,开发者社区持续更新玩法。企业可自研垂直模型,建立技术护城河。
四、未来已来的六大机会
-
人人都是AI指挥官
普通员工用自然语言指挥AI团队,告别Excel/PPT手工劳动
-
硬件重生计划
所有设备装上AI大脑:智能工厂设备自主报修,会议室自动生成纪要
-
科学革命加速器
AI破解蛋白质结构、新材料研发,科研周期从年缩短到天
-
安全驾驶新时代
"AI交规"自动拦截网络攻击,像自动驾驶守护数据安全
-
超级个体崛起
自媒体主1人=内容团队:AI写稿+制图+剪视频+粉丝运营
-
全球化创新赛
中国AI应用场景反哺技术迭代,发展中国家跳过PC时代直通智能时代
五、给产品经理的行动清单
- 本周尝试:用DeepSeek自动处理周报/用户反馈分析
- 季度目标:挑选1-2个业务场景做AI改造试点
- 年度战略:建立企业知识库,培养AI产品经理团队
- 终极思考:你的产品如果不AI化,3年后会被谁颠覆?
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。