大型语言模型 (LLM) 能否改变我们对基因-表型关系的理解?
预训练大型语言模型 (LLM) 由于其在自然语言处理方面的成功,在生物医学领域引起了越来越多的关注。然而,在将这些模型应用于生物信息学和生物医学领域时,多源基因组学数据的复杂特征和异质性构成了重大挑战。为了应对这些挑战,我们提出了 GP-GPT,这是第一个用于遗传表型知识表示和基因组学关系分析的专用大型语言模型。我们的模型在一个综合语料库上分两个阶段进行微调,该语料库由基因组学、蛋白质组学和医学遗传学的 3,000,000 多个术语组成,这些术语来自多个经过大规模验证的数据集和科学出版物。GP-GPT 展示了准确检索医学遗传学信息和执行常见基因组学分析任务(例如基因组学信息检索和关系确定)的熟练程度。跨特定领域任务的比较实验表明,GP-GPT 的性能优于最先进的 LLM,包括 Llama2、Llama3 和 GPT-4。这些结果突出了 GP-GPT 在加强遗传疾病关系研究并促进基因组学和医学遗传学领域准确有效分析的潜力。我们的调查证明了 GP-GPT 中生物因子实体表示的细微变化,这表明了 LLM 应用于推进基因表型研究的机会。
内容简介
GP-GPT 是第一个用于遗传表型知识表示和基因组学关系分析的专用大型语言模型。它旨在绘制基因、蛋白质和疾病之间的复杂关系
GP-GPT 的主要特点:- 根据 3,000,000+ 基因组学术语进行微调- 集成来自 OMIM、DisGeNET、UniProt、dbGaP 的数据- 在基因组学任务上优于 Llama2 和 GPT-4 等最先进的 LLMs
GP-GPT 擅长:
- 遗传医学问答
- 基因-疾病关联鉴定
- 基因组学关系确定
- 可视化基因
-表型嵌入
这种多功能性使其成为研究人员和临床医生的强大工具。
该模型有三种尺寸:
- GP-GPT 小号(基于 Llama2 7B)
- GP-GPT 基础(基于 Llama3.1 8B)
- GP-GPT 大号(基于 Llama3.1 70B)
每个变体在性能和计算要求之间提供不同的权衡。
GP-GPT 能够在统一的嵌入空间中表示复杂的基因组关系,为发现高风险基因和了解疾病机制开辟了新的途径。这可能会加速阿尔茨海默氏症和其他遗传疾病等领域的研究。
局限性和未来工作:需要更大、更多样化的基因组数据集改进基因组实体的标记化与生物序列数据和医学成像的集成解决这些问题可以进一步增强 GP-GPT 的能力。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。