论文标题:Prediction of NOx emission concentration from coal-fired power plant based on joint knowledge and data driven
创新点
提出了一种基于联合知识和数据驱动的混合模型。首先,我们整合NOx生成机制,利用知识驱动的组合特征选择方法计算变量相关性,并提供模型的特征库。其次,引入模态能量差和样本熵增强VMD,从非线性特征参数中提取深度时频信息;最后,我们采用自适应分割来预测NOx排放浓度。主要贡献总结如下:
-
提出了一种基于联合知识和数据驱动的混合模型。NOx排放浓度预测挑战是通过整合NOx生成机制知识、组合特征选择、信号分解和深度学习来完成的;
-
建立了一种知识驱动的组合特征选择方法,广泛挖掘最佳特征集合,避免单一方法在描述变量相关性方面存在较大差异;
-
采用一种新的信号分解方法(MEVMD)对非线性时间序列特征进行分解。基于排列熵测量对分解后的残差进行滤波;
-
通过编码器堆栈输入层的切片模块对时间序列进行自适应分割。描述了历史NOx浓度与未来NOx浓度之间的关系;
-
将Informer应用于NOx排放浓度的预测。利用深度学习捕获时间序列数据依赖耦合。
1. 摘要
准确的NOx浓度预测对燃煤电厂污染物排放控制和安全运行具有重要意义。单个数据驱动模型无法充分描述研究对象的全局属性,影响了泛化性能。提出了一种基于联合知识和数据驱动的NOx排放浓度预测方法。首先,引入知识驱动组合特征选择方法,为数据驱动建模提供全局特征基础;其次,利用模态能量差和样本熵实现变分模态分解(VMD)的自适应分解。该方法可以提取非线性和非光滑特征中的深层时频信息。最后,我们使用Informer结合自适应时间序列分割方法来预测NOx浓度。实验结果表明,该方法对NOx浓度的预测效果优于几种比较模型。
关键词:NOx排放浓度预测;知识驱动;数据驱动;Informer;信息者模态分解
2. 背景介绍:锅炉和机械知识
选择性催化剂还原(SCR)是一个复杂的化学反应体系。它主要由反硝化反应系统、氨储运系统和氨/空气喷雾系统组成。SCR反应器通常采用高灰布置,即布置在节煤器和空气预热器之间的烟道内。
SCR脱硝技术具有无二次污染、装置结构简单、运行可靠、维护方便等特点。在合理的条件和适宜的温度条件下,脱硝效率可达80-90%。本文1000mw超超临界燃煤机组SCR脱硝装置总体结构及生产流程图如图1所示
图1 SCR脱硝装置的总体结构和生产流程
2. 整体预测模
提出了一个联合知识和数据驱动的NOx浓度预测模型。为方便起见,建议的模型在以下各节中简称为ME-INF。图2显示了ME-INF的总体框架。总体步骤如下:
-
数据准备。输入原始数据集。执行去除异常值、填充异常和空数据、数据规范化等预处理操作。时间序列之间的差异大于该序列平均值的两倍的数据定义为无效数据点,并用前后25个点的平均值填充;
-
特征变量选择。候选特征变量最初是基于对SCR反应机理的了解来选择的。计算变量的相关性,并使用知识驱动的组合特征选择算法对它们进行排序。确定模型的输入特征变量;
-
非线性序列分解。采用MEVMD方法将非线性不稳定特征序列分解为简单光滑的IMF及其残差对。通过子序列提取变量的深度时频信息。根据置换熵对分解残差的随机性进行滤波;
-
模型的训练。将机械特征变量、时间特征变量和分解后的子序列输入模型。初始化模型参数。设置学习率和迭代次数等参数来训练预测模型。使用网格搜索方法选择模型中可选的超参数;
-
模型测试。输入测试数据集。用ME-INF模型输出SCR系统出口NOx浓度的预测结果。
图2 ME-INF的结构
|总结
建立准确、稳定的NOx排放浓度预测模型是实现燃煤电厂脱硝和环保的基础。提出了一种基于联合知识和数据驱动的NOx排放浓度混合预测模型。首先,利用知识驱动组合特征选择为数据驱动建模提供全局特征库;其次,利用模态能量差和样本熵对模型进行改进,增强模型提取非线性信息的能力;最后,采用信息源和自适应分割技术对NOx排放浓度进行预测。实验结果表明,该模型具有较强的泛化能力和预测精度。
联合知识和数据驱动建模的概念为复杂的时间序列预测任务提供了一种新的解决方案。但其在NOx浓度预测中的应用尚处于探索阶段。未来的研究目标是通过加入额外的特征参数,如运行条件、煤质变化等,来扩展模型的动态预测能力。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。