DSPy:告别提示词工程,拥抱编程式LLM开发
斯坦福大学NLP小组开源了一个名为DSPy的star数高达18.4k的LLM开发框架,它提出了一种全新的方式来构建基于大语言模型的应用 - 不是通过手工编写和优化提示词(Prompt),而是通过编程的方式来声明和组合模块。本文带你一探这个创新框架的特点和优势。
为什么需要DSPy?
在当前的LLM应用开发中,我们主要依赖于手工编写和优化提示词模板。这种方式存在以下问题:
1. 提示词往往冗长且脆弱,需要反复调试
2. 针对特定场景优化的提示词难以迁移到其他场景
3. 整个过程较为艺术化,缺乏系统性
4. 难以构建和维护复杂的LLM应用流程
DSPy框架正是为了解决这些问题而生。它让开发者可以用更加结构化、模块化的方式来开发LLM应用。
DSPy的核心理念
DSPy的核心理念是将LLM应用开发转变为编程式的范式,主要包含三个关键抽象:
1. Signatures(签名): 声明式地定义输入输出行为
2. Modules(模块): 封装常用的提示词模式,支持组合构建pipeline
3. Teleprompters(优化器): 自动优化生成的提示词
让我们逐一来看这些概念。
Signatures: 声明式定义任务
在DSPy中,我们使用Signature来声明任务的输入输出行为。看看下面这行代码:
sig = dspy.Signature("question -> answer")
没错,就这么简单!这行代码优雅地完成了原本需要手写几百字提示词的工作。如此简洁的声明式语法,不得不让人感叹DSPy设计的精妙!
当然,我们还可以用类定义的方式来实现更细粒度的控制:
class BasicQA(dspy.Signature): """回答问题的简单问答模块""" question = dspy.InputField() answer = dspy.OutputField(desc="brief answer")
这两种方式都比手写长篇的提示词要简洁得多,而且更容易维护和修改。
Modules: 模块化构建应用
DSPy提供了多个内置模块,覆盖了常见的提示词技术:
-
ChainOfThought: 思维链推理
-
ProgramOfThought: 编程式思维
-
Retriever: 检索增强生成
-
ReAct: 推理和行动交互
我们可以组合这些模块构建复杂的应用。例如一个简单的RAG系统:
class RAG(dspy.Module): def __init__(self, num_passages=3): super().__init__() self.retrieve = dspy.Retrieve(k=num_passages) self.generate = dspy.ChainOfThought(RAGSignature) def forward(self, question): context = self.retrieve(question).passages return self.generate(context=context, question=question)
Teleprompters: 自动优化提示词
DSPy的一大亮点是提供了优化器来自动优化生成的提示词。我们只需要:
1. 提供一些训练样例
2. 定义评估指标
3. 使用优化器编译模块
例如:
# 定义评估指标 def evaluate(example, pred): return pred in ["positive", "negative", "neutral"] # 创建优化器 optimizer = dspy.BootstrapFewShot( metric=evaluate, trainset=examples ) # 编译优化 compiled_model = optimizer.compile(MyModule())
DSPy vs 传统方法的优势
相比传统的提示词工程,DSPy具有以下优势:
-
更高的可维护性: 代码更加结构化,易于理解和修改
-
更好的复用性: 模块可以方便地在不同项目间复用
-
自动优化: 优化器可以自动改进提示词效果
-
更强的扩展性: 易于构建复杂的应用流程
实践建议
1. 从简单的Signature开始,逐步熟悉DSPy的编程模式
2. 充分利用内置模块,避免重复造轮子
3. 善用优化器提升效果
4. 注意保持代码的模块化和可维护性
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。