今天带来的就是一篇高分GBD数据文章!
在这个研究,作者以各国酒精相关公共卫生政策(PHPs)和酒精相关肝脏疾病(ALD)作为切入点,整合GBD数据库探究了酒精相关PHP的制定与酒精相关健康后果的长期负担之间的关系,为后续公共政策制定提供了新的视角。整篇看下来复现难度比较小,分析思路是GBD常用的统计分析,没有特别突出的点,但是依然拿下了26.8分顶级期刊,可以说作者比较有全局思维,是早早吃上螃蟹了。太轻松,太丝滑了,这必须要学起来!!Ps:文章原文信息已放至文末(ps:现在已经有很多科研团队开展GBD研究了,发文赶早不赶晚!别犹豫了,行动起来,个性化思路可以找馆长,咱有专业团队,为您精准提供个性化服务~)
l题目:关于酒精的公共卫生政策与全球癌症、肝病和心血管疾病结局之间的关系
研究背景
饮酒是导致年轻人和中年人疾病、残疾和死亡的一个重要风险因素,易导致酒精相关肝脏疾病(ALD)如肝硬化、肝细胞癌(HCC)和酒精相关性肝炎的发生。早期识别酒精使用障碍(AUD)患者,采取措施减少酒精消费,对于减轻肝病负担至关重要。多项研究表明实施公共卫生政策可减少酒精摄入,但酒精相关公共卫生政策(PHPs)和ALD或HCC的关联研究却很少。因此,在这个研究中,作者旨在开发一种工具,为每个国家或世界卫生组织(WHO)的酒精食用政策提供借鉴,并评估酒精相关PHP的制定与酒精相关健康后果的长期负担之间的关系。
数据来源
作者先是世卫组织GISAH和全球疾病负担数据库(2010年至2019年)收集了每个国家酒精消费措施及与酒精引起的疾病负担相关的结局信息,此外该团队还整合了每年以纯酒精升为单位的人均酒精消费量(APC)和AUD患病率相关信息。
研究思路
首先,作者先是使用多重对应分析(MCA)估计每个国家的酒精准备指数(API),接着建立了具有泊松族分布和稳健方差估计器的多水平广义线性模型。采用随机截距的多层模型分析了各国(2010年至2019年)连续年份的差异。最后作者引入了API和时间之间的交互术语,评估了API与相关疾病随时间递进的关联性和进行了一项敏感性分析。
主要结果
1.受试者临床分析
首先,作者整合GBD数据库后在全球范围内进行了一项PHPs与酒精相关疾病负担的关联研究。该数据集总共包括169个国家,其中根据世界银行分类标准,低、中下、中上和高收入国家分别有26、44、47和50个,目前15岁以上年龄群中至少39.4%的人是饮酒者(表1)。在全球范围内,不到三分之一的国家制定了强有力的PHP政策(表2),在2016年只有10个国家制定了酒精最小单位定价(MUP)政策如加拿大、中非共和国和刚果民主共和国等。该团队基于MCA计算出酒精准备指数(API),范围从0到100,发现对该指数贡献最大的是监测和监督及该项欧洲得分最高,非洲得分最低(图1)。
表1 各大洲的主要基线特征和酒精准备指数
表2 各大洲国家PHP政策分析
图1 酒精防范指数热图分析
2.酒精准备指数与酒精所致疾病负担关联分析
接着作者对全球酒精相关疾病结局进行了评估,发现2019年AUD患病率中位数为1.6%。较高的API与较低的AUD患病率之间存在统计学上显著的关联(图2A),欧洲没有线性关联,但比较四分位数的亚组分析时有着显着的非线性关联。2019年肝硬化的估计死亡率为每10万居民20.9例,同期因ALD死亡的居民总数为每10万居民6.4例。此外较高的API与较低的肝硬化的ALD死亡率相关(图2B-C)。非洲和美洲表现出PHP政策与较低的ALD死亡率的强线性相关,而欧洲则呈非线性关联。此外作者发现酒精相关PHPs和API的建立与较低的肿瘤和心血管死亡率相关(图2D-F)。但区域差异结果表明非洲和美洲中API与较低的心血管和ACMP患病率之间存在统计学上的显著关联。
图2 酒精准备指数与酒精所致疾病负担关联分析
3. PHP与ALD和肝病关联分析
最后,作者引入了API和时间之间的交互术语,以评估随时间递进后API与AUD和ALD患病率和ALD导致的失能调整生命年(DALYs)之间的关系。结果表明API与酒精相关结果的减少之间存在显著的相互作用,但结果之间的进展是不同的(图3),其中与2年和4年后AUD患病率和3年后心血管死亡率显著相关(图4)。同时酒精引起的HCC发病率和死亡率分别在8年和7年后变得显著。在敏感性分析中,作者将API分为四分位数,评估了API和AUD发病率之间的关系。API与ALD患病率相关性呈时间依赖性,此外API与ALD导致的DALYs之间也观察到显著的关联。
图3 PHP与ALD长期患病率关联分析
图4 PHP与酒精相关肝病死亡率关联分析
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。