还记得电影《终结者》中,拥有高度智能的机器人 T-800 被派往过去刺杀约翰·康纳吗?虽然这只是科幻电影中的场景,但它也预示着人工智能 (AI) 的发展方向:从简单的工具到能够独立思考和行动的智能体。如今,这种智能体,即 AI 代理,正在逐步融入我们的工作和生活,改变着传统的工作流程,并引领我们进入人机协作的新时代。
传统工作流程的困境:低效、易错、成本高
想象一下,客服人员需要手动接听电话、回复邮件,人力资源部门需要人工筛选简历、面试候选人,金融机构需要人工审核贷款申请、处理交易……这些重复性、低价值的工作不仅消耗了大量人力,也限制了企业的发展效率。更糟糕的是,人工操作容易出错,导致效率低下、成本高昂,甚至引发严重的后果。
AI 代理的崛起:自动化、智能化、个性化
AI 代理的出现,为解决这些问题提供了新的思路。与传统工作流程相比,AI 代理拥有以下显著优势:
-
自动化:AI 代理能够自动执行重复性任务,例如数据录入、信息检索和文档处理等,从而将人类从繁琐的工作中解放出来,专注于更具创造性和价值的工作。
-
智能化:AI 代理能够理解指令、分析数据、做出决策,并提供个性化的服务。例如,智能客服机器人可以根据客户的问题自动生成回答,智能招聘系统可以根据候选人的简历自动进行评估,智能投资顾问可以根据客户的风险偏好自动生成投资方案。
-
可扩展性:AI 代理可以轻松扩展,以满足企业不断增长的业务需求。例如,企业可以根据需要增加智能客服机器人的数量,以提高客户服务的效率和质量。
-
个性化:AI 代理能够根据用户的个人需求和偏好提供定制化的服务。例如,智能推荐系统能够根据用户的浏览历史推荐相关的商品或服务,智能助手可以根据用户的日程安排自动提醒重要事件。
AI 代理重塑工作流程:案例解析
AI 代理的应用场景日益广泛,从客服、人力资源到金融服务,都在经历着变革。
案例一:客户服务升级,24/7 全天候响应
想象一下,当你遇到问题需要咨询客服时,无需等待漫长的排队时间,而是可以直接与智能客服机器人进行交流,它会根据你的问题自动生成回答,并提供 24/7 的服务。自动语音识别技术可以将你的语音转化为文字,方便客服人员快速了解你的需求。自然语言处理技术可以帮助客服人员更好地理解你的意图,并提供个性化的服务。
案例二:人力资源管理优化,高效精准
招聘流程往往耗时费力,需要人工筛选简历、面试候选人。AI 代理的应用,可以大大提高招聘效率。智能简历筛选系统可以根据岗位要求自动筛选简历,将符合要求的候选人推荐给招聘人员。AI 面试系统可以根据预设的评分标准自动评估候选人的技能和经验,并提供面试结果。智能招聘助手可以根据候选人的简历和面试结果自动生成招聘报告,方便招聘人员做出决策。
案例三:金融服务智能化,安全便捷
金融机构需要处理大量交易、进行风险控制,而这些工作往往可以通过 AI 代理轻松完成。智能风控系统可以根据客户的信用记录、交易行为等信息,自动评估客户的信用风险,并提供风险评估报告。智能反欺诈系统可以根据交易数据和行为模式,自动识别潜在的欺诈行为,并发出预警。智能投资顾问可以根据客户的风险偏好和投资目标,自动生成投资方案,并进行投资组合管理。
AI 代理带来的挑战与机遇
AI 代理的应用也带来了新的挑战和机遇。
-
就业市场的影响:AI 代理可以替代部分人工工作,从而导致部分工作岗位的消失。但同时,AI 代理的应用也会创造新的工作机会,例如 AI 管理员、AI 开发人员和 AI 数据分析师等。
-
伦理问题:AI 代理的决策过程可能存在偏见或不透明,从而导致不公平或歧视现象。因此,需要制定相关的伦理准则和法规,以确保 AI 代理的公平性和透明度。
-
安全问题:AI 代理的应用也可能带来新的安全风险,例如数据泄露、隐私侵犯和系统攻击等。因此,需要加强安全管理,确保 AI 代理的安全性和可靠性。
应对挑战,抓住机遇
为了应对 AI 代理带来的挑战,并抓住其中的机遇,企业需要采取以下措施:
-
技能培训:为员工提供 AI 相关的技能培训,帮助他们适应 AI 时代的工作环境,并提升他们的就业竞争力。
-
制定伦理准则:制定 AI 伦理准则,确保 AI 代理的公平性、透明度和可解释性,避免 AI 代理的应用带来的负面影响。
-
加强安全管理:建立健全的安全管理体系,确保 AI 代理的安全性和可靠性,防止数据泄露和隐私侵犯等安全事件的发生。
人机协作,共创未来
AI 代理正在改变着我们的工作方式,重塑着传统的工作流程。通过自动化、优化和创新,AI 代理能够提高效率、降低成本、创造新的工作机会,并推动企业的数字化转型。虽然 AI 代理的应用也带来了新的挑战,但通过采取有效的应对措施,企业可以抓住 AI 代理带来的机遇,在竞争激烈的市场中取得成功。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。