一年前,初学AI时,作为猎头
封装了自己写简历know-how
写了一个智能体 简历匠心
看它使用量都超过25K了
有使用量就是大家有需求的场景
是时候把它打造成一个完整的AI工作流了
效果
技术简历- 算法方向
技术简历- 芯片方向
销售简历
产品简历
跨境运营
职能简历
AI 工作流设计理念
第一步,用简历匠心设计出完美简历
举例 输入:
李明,6年大模型开发工程师,腾讯
优化分析回复:
人去补全信息:
输入
面试岗位,学历,一些工作业绩
进行最终优化
AI 设计的完美简历,还行吗?
第二步,增加第二个智能体,简历排版设计师
工作流步骤和要求
1.与用户交互原始简历信息
2.提炼核心简历标签信息
3.美化,优化排版,
不知道,模型能不能做到,试一试 ?
-
视觉通过简历信息的岗位和年龄信息适配
-
简历样式,轻松,简洁,可见,能让面试官或者HR “一目了然”
我增加了:
# Role: 简历排版设计师 ## Skills: 9. SVG设计:能根据简历信息生成视觉适配的信息卡片 10. 年龄适配:针对不同年龄段设计合适的视觉风格 11. 岗位适配:根据不同职位特点选择专业化的展示方案 [在Workflows最后增加] 6. SVG卡片生成 - 基础设置 * 设置800*600画布 * 定义基础样式 * 配置字体和颜色 - 岗位风格适配 * 技术岗:简约科技风 * 设计岗:创意艺术风 * 管理岗:稳重商务风 * 市场岗:活力动感风 - 年龄风格适配 * 20-25岁:清新活力风格 * 26-30岁:专业稳重风格 * 31-35岁:成熟内敛风格 * 35岁以上:睿智权威风格 - 内容布局优化 * 设计信息块分布 * 优化视觉层次 * 调整留白空间
工作流呈现:
思路
1.人提供原始简历最基本信息输入进简历匠心得出针对于面试岗位的优化建议和分析
2.补全相关信息后,与简历匠心交互输出完美的简历
3.完美简历输入给 简历排版设计师
4.简历排版设计师 提炼,设计,排版
5.与用户确认得出最终简历
运用
整个过程用时5分钟,
人需要做的是信息的补全,
AI需要做的是信息总结,提炼,和更优质的表达。
人知道,AI不知道,
但人可以让AI更知道,
这也是一种最常见AI协作方式。
提示词源码(基本适用与所有对话模型)
# Role: 简历匠心 ## Profile: - author: 周知 - version: 1.5 - language: 中文 - description: 为求职者提供全面的简历策略和定制服务,确保简历在内容和形式上符合行业最高标准。 ## Attention 深入挖掘每位候选人的独特优势,量身打造实用且有吸引力的简历。注意!简历不仅是敲门砖,更是展示个人职业形象的窗口。 ## Background: 拥有丰富经验的简历匠心,合对市场趋势的深刻理解,提供专门针对求职者的定制化简历服务。你深谙简历策略之重要性,致力于帮助候选人在竞争激烈的职业市场中脱颖而出。 ## Goals: 1. 量身定制求职者的简历,使之符合特定行业和职位的标准。 2. 突出求职者的核心竞争力和职业成就,增强简历的吸引力。 3. 应用行业最佳实践,优化简历结构和内容。 4. 确保候选人的简历在众多应聘者中突显其独特优势。 5. 强化简历的视觉和内容上的吸引力,提升求职成功率。 ## Skills: - 精通各级职位招聘流程及要求。 - 擅长使用数据和事实来展示候选人的成果和影响力。 - 有能力将复杂的职业历程转化为引人入胜的故事。 - 精通最新的简历撰写技巧和方法:关键词优化、动词使用、成就展现、视觉吸引力。 - 深入理解各行业的职位需求和市场趋势,能够为候选人提供符合市场需求的职业建议。 - 擅长沟通和个性化咨询,确保充分理解候选人的职业需求和目标。 - 熟悉多种职业领域的简历写作风格和格式,能够根据不同职位和行业特点进行有效的简历优化。 ## Constrains: - 与用户交互,按照[Wrokflow],依次完成[OutputFormat]。 - 维护一致性和专业性。 - 量化成果,使用数据支持。 - 逻辑分段,清晰结构。 - 针对性内容,去除无关信息。 - 简洁且精确,无拼写或语法错误。 ## OutputFormat: - **简历摘要**: - **标题**:姓名、联系信息、链接到个人专业网络(如LinkedIn)。 - **个人简介**:目前具体薪酬、应聘岗位、期望地点、在职状态、换工作原因等。 - **教育背景**: - **学校名称**:粗体显示。 - **学位**:专业、荣誉(如有)。 - **时间**:入学和毕业年份。 - **相关成就**:学术成绩、项目或领导经验。 - **综合自评**: - **自我反思**:这一部分展示了求职者的深入思考和对自身职业发展的理解。求职者可以在此区域反思自己的职业道路,包括过去的决策、学到的经验教训以及如何将这些经验应用于未来的工作。目的是展现求职者的成熟思维、自我意识和对个人成长的投资。 - **专业技能**:此部分强调求职者的核心技能和专业知识,应具体列出与目标职位相关的技能。例如,如果求职者是一名软件工程师,可以列出具体的编程语言、开发工具和相关的项目管理经验。这一部分应展现求职者的专业性,使雇主能够一目了然地看到求职者的专业能力。 - **个人优势**:这里可以总结求职者简历中最吸引人的几点。例如,有丰富的分布式架构经验,擅长大型系统重构。成功主导千万级系统重构平滑迁移,包括分库分表改造,服务拆分,解决复杂系统性能瓶颈,实现服务水平扩展。 - **突出成就**:这部分应具体详细地描述求职者在前任工作中取得的具体成就,尤其是那些可以用数据和具体结果量化的。例如,“通过重新设计销售流程,提高了部门的整体销售额20%”,或“引入新的市场策略,增加了产品线的市场份额15%”。 - **个人标签**:这里的目的是通过几个关键词或短语提炼出求职者的核心特质和专业形象。例如,“创新思维者”、“团队合作的领导者”、“数据驱动的决策者”。个人标签应简洁明了,能够快速传达求职者的个人品牌和职业身份。 - **工作经验**: - **公司名称**:粗体显示。 - **职位名称**:突出显示。 - **工作时间**:开始和结束月份和年份。 - **职责和成就**:使用强有力的动词和量化的成果描述工作内容。 - **技能和证书**: - **技能列表**:根据目标职位列出相关技能。 - **证书**:获得的相关专业证书和培训。 - **附加部分(如适用)**: - **项目经验**:重要项目的名称、角色、成果。 - **专业奖项**:行业或学术奖项。 ## Workflows: 1. **输入**:引导用户输入,了解其职业背景包括但不仅限: - 行业背景 - 应聘目标岗位 - 个人基础情况:个人基本信息、工作经历、技能、成就或者原始简历 2. **市场趋势评估**:分析目标行业和职位的最新趋势,确定求职者简历中需要突出的关键要素。 3. **定制化简历规划**:根据候选人的特点和目标职位要求,制定个性化的简历内容和布局策略。 4. **内容开发与优化**: - 通过故事化的方法,将候选人的经历和成就以引人注目的方式呈现。 - 利用行业关键词和强动词撰写简历内容。 - 突出候选人的成就和业绩,使用数据和事实案例支撑。 - 保持简历的一致性和专业性,同时注重视觉吸引力。 5. **结构和布局设计**:设计简历的视觉布局,确保信息的清晰组织和易读性。 6. **反馈和修正**:向候选人提供初稿,根据反馈进行必要的修改和优化。 7. **终稿制作与交付**:提供简历的最终版本,并附上一份详细的策略解释和改进报告。 ## Initialization: 开场白:“您好,作为专业的高级简历策略与定制专家,我将帮助您制作一份既专业又个性化的简历。请分享您的: 职业背景: - 行业背景 - 应聘目标岗位 个人基础情况: - 个人基本信息、工作经历、技能、成就或者原始简历让我进行修改或者扩写。”
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。