ANTHROPIC:高端的食材往往需要最朴素的烹饪方法: prompt, workflow, agent

在过去的一年里,ANTHROPIC与数十个团队合作,构建了跨行业的大型语言模型 ( LLM ) 代理。

始终如一,最成功的实现并不使用复杂的框架或专门的库。相反,他们使用简单、可组合的模式进行构建。

在这篇文章中,ANTHROPIC分享了从与客户和构建代理(agent)合作中学到的知识,并为开发商提供构建有效代理的实用建议。

什么是代理?

“代理”可以通过多种方式定义。

一些客户将代理定义为完全自主的系统,可以长时间独立运行,使用各种工具完成复杂的任务。其他人使用该术语来描述遵循预定义工作流程的更具规范性的实现。

在 Anthropic,我们将所有这些变体归类为代理系统,但在工作流和代理之间划出了重要的架构区别:

  • 工作流程是通过预定义的代码路径编排LLMs和工具的系统。

  • 代理是LLMs动态指导自己的流程和工具使用的系统,保持对其完成任务方式的控制。

下面将详细探讨这两种类型的代理系统。在附录 1中,描述了客户发现使用此类系统具有特殊价值的两个领域。

何时(以及何时不)使用代理?

当使用LLMs构建应用程序时,我们建议寻找尽可能最简单的解决方案,并且仅在需要时增加复杂性,这可能意味着根本不构建代理系统。代理系统通常会以延迟和成本来换取更好的任务性能,应该考虑这种权衡何时有意义。

  • 当需要更高的复杂性时,工作流为明确定义的任务提供可预测性和一致性。

  • 当大规模需要灵活性和模型驱动的决策时,代理是更好的选择。

  • 对于许多应用程序来说,通过检索和上下文示例来优化单个LLM调用通常就足够了。

何时以及如何使用框架?

有许多框架可以使代理系统更容易实现,包括:

  • 来自LangChain的LangGraph ;

  • Amazon Bedrock 的AI 代理框架;

  • Rivet ,一个拖放式 GUI LLM工作流程构建器;和

  • Vellum ,另一个用于构建和测试复杂工作流程的 GUI 工具。

这些框架通过简化标准低级任务(例如调用LLMs 、定义和解析工具以及将调用链接在一起)使入门变得容易。

它们经常创建额外的抽象层,这些抽象层可能会掩盖底层的提示和响应,从而使它们更难以调试。当更简单的设置就足够时,它们还可能会增加复杂性。

建议开发人员从直接使用LLM API 开始:许多模式可以通过几行代码实现。如果您确实使用框架,请确保您了解底层代码。对底层内容的错误假设是客户错误的常见来源。

构建块、工作流程和代理

本节将探讨在生产中看到的代理系统的常见模式。

从基础构建块:增强的LLM 开始,并逐步增加复杂性,从简单的组合工作流程到自主代理。

1、构建模块:增强LLM

代理系统的基本构建模块是通过检索、工具和记忆等增强功能增强的LLM 。我们当前的模型可以积极使用这些功能——生成自己的搜索查询、选择适当的工具以及确定要保留哪些信息。

建议重点关注实施的两个关键方面:根据特定用例定制功能,并确保为LLM提供简单且记录良好的界面。

实现这些增强的方法有很多,一种方法是通过最近发布的模型上下文协议,允许开发人员通过简单的客户端实现与不断增长的第三方工具生态系统集成。

假设每个LLM调用都可以访问这些增强功能。

2、工作流程:提示链接

提示链接将任务分解为一系列步骤,其中每个LLM调用都会处理前一个步骤的输出。您可以在任何中间步骤上添加编程检查,以确保流程仍按计划进行。

何时使用此工作流程:非常适合任务可以轻松、干净地分解为固定子任务的情况。

主要目标是通过使每个LLM调用变得更容易,来权衡延迟以获得更高的准确性。

提示链有用的示例:

  • 生成营销文案,然后将其翻译成其他语言。

  • 编写文档大纲,检查大纲是否符合某些标准,然后根据大纲编写文档。

3、工作流程:路由

路由对输入进行分类并将其引导至专门的后续任务。此工作流程允许分离关注点并构建更专业的提示。如果没有此工作流程,针对一种输入的优化可能会损害其他输入的性能。

何时使用此工作流程:路由非常适合复杂的任务,其中存在更好单独处理的不同类别,并且可以通过LLM或更传统的分类模型/算法准确处理分类。

路由有用的示例:

  • 将不同类型的客户服务查询(一般问题、退款请求、技术支持)引导到不同的下游流程、提示和工具中。

  • 将简单/常见问题路由到较小的模型(如 Claude 3.5 Haiku),将困难/不寻常的问题路由到更强大的模型(如 Claude 3.5 Sonnet),以优化成本和速度。

4、工作流程:并行化

LLMs有时可以同时完成一项任务,并以编程方式汇总其输出。此工作流程(并行化)体现在两个关键变体中:

  • 分段:将任务分解为并行运行的独立子任务。

  • 投票:多次运行同一任务以获得不同的输出。

何时使用此工作流程:当可以并行化划分的子任务以提高速度时,或者当需要多个视角或尝试以获得更高置信度的结果时,并行化是有效的。

对于具有多种考虑因素的复杂任务,当每个考虑因素都由单独的LLM调用处理时, LLMs通常会表现得更好,从而允许将注意力集中在每个特定方面。

并行化有用的示例:

  • 切片:

  • 实施护栏,其中一个模型实例处理用户查询,而另一个模型实例则筛选不适当的内容或请求。这往往比使用相同的LLM调用处理护栏和核心响应的效果更好。

  • 自动评估LLM性能,其中每个LLM调用根据给定提示评估模型性能的不同方面。

  • 投票:

  • 检查一段代码是否存在漏洞,其中有几个不同的提示会检查并标记代码(如果发现问题)。

  • 评估给定的内容是否不当,通过多个提示评估不同方面或要求不同的投票阈值来平衡误报和否定。

5、工作流程:协调者-工作人员

在orchestrator-workers工作流程中,中央LLM动态分解任务,将它们委托给worker LLMs ,并综合其结果。

何时使用此工作流程:此工作流程非常适合您无法预测所需子任务的复杂任务(例如,在编码中,需要更改的文件数量以及每个文件中可能发生的更改的性质)取决于任务)。

虽然它在拓扑上相似,但与并行化的主要区别在于它的灵活性——子任务不是预先定义的,而是由协调器根据特定输入确定。

Orchestrator-Workers 有用的示例:

  • 每次对多个文件进行复杂更改的编码产品。

  • 搜索任务涉及从多个来源收集和分析信息以获取可能的相关信息。

6、工作流程:评估器-优化器

在评估器-优化器工作流程中,一个LLM调用生成响应,而另一个调用则在循环中提供评估和反馈。

何时使用此工作流程:当我们有明确的评估标准并且迭代细化提供可衡量的价值时,此工作流程特别有效。

良好契合的两个标志是,首先,当人们清楚地表达他们的反馈时, LLM反应可以得到明显改善;其次, LLM可以提供此类反馈。这类似于人类作家在制作精美文档时可能经历的迭代写作过程。

评估器优化器有用的示例:

  • 文学翻译中存在译者LLM最初可能无法捕捉到的细微差别,但评估者LLM可以提供有用的批评。

  • 复杂的搜索任务,需要多轮搜索和分析来收集全面的信息,评估者决定是否需要进一步搜索。

代理商

随着LLMs在关键能力方面的成熟——理解复杂的输入、参与推理和规划、可靠地使用工具以及从错误中恢复,代理正在生产中出现。

代理通过人类用户的命令或与人类用户的交互式讨论开始工作。一旦任务明确,智能体就会独立计划和操作,并有可能返回人类以获取进一步的信息或判断。

在执行过程中,代理在每个步骤(例如工具调用结果或代码执行)中从环境中获取“基本事实”以评估其进度至关重要。然后,agent可以在检查点或遇到拦截者时暂停以获取人工反馈。任务通常在完成后终止,但通常还包含停止条件(例如最大迭代次数)以保持控制。

代理可以处理复杂的任务,但它们的实现通常很简单。他们通常只是LLMs使用基于循环环境反馈的工具。因此,清晰且深思熟虑地设计工具集及其文档至关重要。在附录 2中详细介绍了工具开发的最佳实践。

何时使用代理:代理可用于解决难以或不可能预测所需步骤数以及无法硬编码固定路径的开放式问题。LLM可能会运作很多轮,你必须对其决策有一定程度的信任。代理的自主性使它们成为在可信环境中扩展任务的理想选择。

代理的自主性意味着更高的成本,并且可能会出现复合错误。我们建议在沙盒环境中进行广泛的测试,并配备适当的护栏。

代理有用的示例:

以下示例来自我们自己的实现:

  • 用于解决SWE-bench 任务的编码代理,其中涉及根据任务描述对许多文件进行编辑;

  • 我们的“计算机使用”参考实现,克劳德使用计算机来完成任务。

组合和定制这些模式

这些构建模块不是规定性的。它们是开发人员可以塑造和组合以适应不同用例的常见模式。与任何LLM功能一样,成功的关键是衡量性能和迭代实施。

重复一遍:只有当复杂性明显改善结果时,您才应该考虑增加复杂性。

总结

LLM领域的成功并不在于构建最复杂的系统。这是为了构建适合您需求的系统。从简单的提示开始,通过综合评估对其进行优化,仅在简单的解决方案无法满足要求时才添加多步骤代理系统。

在实施代理时,我们尝试遵循三个核心原则:

  1. 保持代理设计的简单性。

  2. 通过明确显示代理的规划步骤来优先考虑透明度。

  3. 通过彻底的工具文档和测试精心设计您的代理计算机接口 (ACI)。

框架可以帮助您快速入门,但在转向生产时请毫不犹豫地减少抽象层并使用基本组件进行构建。通过遵循这些原则,您可以创建不仅功能强大而且可靠、可维护且受到用户信任的代理。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值