在人工智能系统领域,多智能体协调是一种构建可扩展、自适应和协作解决方案的强大范式。从模仿人类团队合作的多轮对话代理到管理物流或金融交易的复杂系统,协调多个代理的能力是现代AI的基石。本博客探讨了多智能体协调的技术方面,讨论了其架构、挑战、策略以及来自微软、AWS、IBM和OpenAI等关键参与者的最新进展。
什么是多智能体协调? 多智能体协调涉及协调多个自主代理以实现共同目标。系统中的每个代理都有独特的能力和角色,但它们集体工作以解决单个代理可能难以单独应对的复杂问题。
应用 对话式AI:专门从事不同任务(例如,客户服务、技术支持)的多个机器人。 机器人技术:协调搜索和救援任务的无人机群。 电子商务:AI代理管理库存、定价和客户推荐。 金融系统:通过协作代理进行风险评估和投资组合管理。 多智能体协调的关键组成部分
- 代理设计 每个代理通常包括:
专业技能:由其训练数据、算法和目标定义。 自主性:无需持续监督即可行动的能力。 互操作性:与其他代理的无缝通信。 2. 通信 代理必须高效地交换信息以保持一致性。这通常通过以下方式实现:
消息传递协议:如JSON或Protocol Buffers的格式。 共享知识库:用于状态同步的中心化存储库。 实时消息传递:如WebSockets或MQTT的技术。 3. 协调机制 集中式协调:单个协调器分配任务并监控进度。 分布式协调:代理之间协商角色和责任。 混合模型:结合集中式监督和局部代理自主性。 4. 决策制定 基于规则的系统:固定的政策指导交互。 机器学习模型:使代理能够动态适应和优化其协作。 强化学习:鼓励最大化累积奖励的集体行为。 多智能体协调的最新进展 微软的Magentic-One 微软最近宣布了Magentic-One,这是一个旨在处理涉及网络和基于文件的开放任务的多功能多智能体系统。凭借其模块化架构,Magentic-One使用Orchestrator代理来协调四个专业代理(WebSurfer、FileSurfer、Coder和ComputerTerminal)。它建立在Microsoft AutoGen之上,支持与LLMs(如GPT-4o)兼容的模型无关功能。
AWS 多智能体协调器
AWS推出了多智能体协调器,这是一个旨在处理复杂对话场景的框架。它能够实现智能查询路由、强大的上下文管理,并能够与各种部署环境(如AWS Lambda、本地设置和其他云平台)无缝集成。
多智能体协调的挑战 尽管取得了进步,但多智能体系统仍面临挑战:
-
可扩展性:管理日益增多的代理。
-
冲突解决:处理代理之间的目标重叠。
-
延迟:保持低延迟通信。
-
安全性:防止滥用或漏洞。
结论
多智能体协调通过使系统能够通过协调团队合作处理复杂任务,正在转变人工智能领域的格局。通过专注于模块化、适应性和安全性,这些系统有望重新定义未来各行业人工智能应用的走向。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。