人工智能(AI)在过去的几年里发展迅速。自从其广泛应用以来,创新者已经创造了新技术来解决使用AI的问题。其中一种新技术就是AI代理。它们被采用作为解决各种问题的方案,并且AI代理在商业中的应用也在被探索。
AI代理最早在20世纪60年代和70年代使用基于规则的系统来实现。然而,这些系统是基于一套已经存在的规则来做出决策的。它们表明,机器有可能执行需要人类智能的任务。
20世纪80年代和90年代机器学习的发展标志着AI代理未来的一个重大转变。有了机器学习,AI代理现在可以从经验中主动学习,而不是从一套预定义的规则中学习。这使得AI代理能够随着时间的推移学习和提高其性能,从而使其更加复杂。
随着AI技术的进步,AI代理在机器人和复杂问题解决中的应用变得完全可行。如今,它们正成为日常生活的重要组成部分,比如Siri这样的虚拟助手以及自主机器。
在本文中,我们将探讨AI代理在商业中的应用及其带来的好处。让我们开始吧。
什么是AI代理
AI代理是设计用来自主解决问题以实现特定目标的软件应用程序。它们能够分析问题,将其分解成片段,创建遵循某些步骤的程序性解决方案,然后执行这些步骤以解决问题。除此之外,它们还能够从以往的经验中学习,以便在需要时提供更好的解决方案集。
例如,它们可以用于安排会议和预订预约,甚至航班票务。它们可以优化其操作,以便为您找到机票和住宿的最佳交易。然而,AI代理在商业中的应用有所不同。
AI代理在商业中的应用
AI代理帮助企业运行日常任务,以便让企业主和员工有更多时间专注于业务的其它方面。它们通过以下几种方式来实现这一点:
数字营销
在当今这个时代,数字营销是企业的支柱。没有它,许多企业迟早会垮台。然而,跟上趋势、分析、创建营销活动和材料是非常困难的。作为一个企业家,处理所有这些任务可能很难。
然而,AI代理可以帮助企业跟上趋势,并帮助他们发挥最佳水平以与竞争对手竞争。商业中的AI代理可以分析市场和趋势,然后创建针对目标市场的定制营销活动。
此外,它们可以为不同的受众生成创意营销想法和个性化的电子邮件内容。不仅如此,发送时间也被优化以实现更好的覆盖率和参与度。
零售
AI代理可以在企业中用于个性化购物体验。在零售业中,它作为购物助手,根据购物者的偏好和以往的兴趣向他们推荐产品。它还向他们提供产品信息、价格和可能更适合他们预算的优惠。
零售中的AI代理可以通过预测客户的需求模式来优化库存管理,并自动化补货流程。它们还分析客户反馈和市场趋势,因此为战略决策提供有价值的见解。
自动化日常任务和更好的库存管理有助于企业主更好地管理他们的企业并推动收入的增长。
客户支持
通过作为机器人,AI代理帮助提供快速且快速的客户查询响应。这种AI代理的应用在当今社会很常见,比如在企业的社交媒体账号和网站上的机器人。这些机器人回答客户可能有的问题,并为他们提供解决方案。
它们使用AI和自然语言处理来分析数据,理解客户的需求,并提供准确的信息。通过与客户的互动,它们学习和适应,以便在将来提供更好的服务。通过这样做,它们能够处理大量客户的请求。
物流和配送
许多企业在处理品牌物流和向客户配送物品方面执行得不好。最好的解决方案是使用企业中的AI代理进行配送和物流。
AI代理使用历史数据来预测需求模式,帮助企业管理库存。因此,企业可以跟踪其产品水平,降低缺货或过剩的风险。因此,可以更有效地使用购买库存的资本和储存空间。
它们还通过分析交通、天气条件和其他重要因素来优化配送路线,以确定最佳的配送路线。此外,它还允许客户跟踪他们的订单,并回答有关产品配送的查询。
财务管理与安全
企业中的财务管理涉及大量的计算和风险承担。此外,企业中传统的财务管理方法将企业暴露于盗窃和欺诈等安全风险。
AI代理通过评估公司的当前财务状况并做出预测,提供个性化的财务建议和财富管理。它还提供自动计算请求,帮助企业主进行自己的分析和比较。此外,它通过仔细分析支出概况和动态市场行为,评估可以承担的风险程度。
为了减轻传统财务管理系统中相关的安全风险,AI代理已经设置了欺诈检测机制,以防止盗窃。它们积极检测潜在的金融威胁,这有助于减少损失并提高企业的保护。
使用AI代理在商业中的好处
AI代理正在成为现代商业的关键工具。使用它们的益处包括:
增加销售额和收入,创造财富。
满意的客户群,这对于维持销售至关重要。
更好的品牌形象和认可。
基于数据驱动的事实做出明智的决策
降低安全风险
更好的财务和风险管理
降低运营成本
结论
AI代理在商业中以及更广泛的应用日益增多,标志着人工智能的一个巨大转变。它现在不仅仅是对数据进行处理,而是一个更高层次的智能决策和任务执行。这些代理不仅能够执行预定义的任务,而且能够在未知环境中学习和适应,因此预示着未来将有一个更复杂的AI功能。随着更多企业走向数字化,AI代理在商业中的应用将在未来几年增加。我们迫不及待地想看到服务和技术产品交付的改进。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。