OneGraph是OpenKG SIGData兴趣小组发起贡献的开放知识图谱项目,致力于利用大模型构建LLM需要的中文开放知识图谱。2024年10月24日,OpenKG在CNCC中国计算机大会知识图谱论坛上首次发布OneGraph V1版本。在2025年1月举办的OpenKG年度论坛上,SIGData兴趣组再次发布OneGraph更新。本文简要介绍了OneGraph的设计理念,主要实验及最新进展。
OneGraph V1
OneGraph致力于利用大模型构建LLM需要的开放知识图谱,OneGraph V1版是一个中英文双语的概念图谱,包含2500多万的三元组,经人工评估的三元组准确率达80%,所有数据中有32.28%的三元组由大语言模型(LLM)生成。
OneGraph资源汇总
-
OneGraph官方网站:http://onegraph.openkg.cn/
-
OneGraph V1全量数据下载:
http://data.openkg.cn/dataset/onegraphv1
1.1 数据设计
OneGraph的数据包括4个层级,自顶向下数量逐步提升,包括:
-
cnSchema: 中文schema参考标准;
-
概念图:用于建模概念知识之间的关系;
-
实体图:用于建模不同领域中实体之间的复杂关系;
-
文本图:用于建模文档中不同章节、段落、句子等之间的复杂关系。
这四类图会互相连接,构成完整的OneGraph。本次发布OneGraph V1版主要包含的是概念图。
1.2 利用LLM的构建方式
与已有的知识图谱构建方式不同,OneGraph没有采用人工或者自动抽取的构建方法,而是充分利用了具有参数化知识的LLM进行构建,LLM的利用方式及准确率如下:
除数据生成、数据删除、数据更正和数据翻译使用了大语言模型,我们在OneGraph构建过程中还使用了多个大模型进行交叉验证,经过交叉验证后知识图谱准确率得到了显著的提升,详情如下:
1.3 OneGraph增强方式
我们设计的OneGraph增强方式包括以下4种,如下图所示:
-
抽取(OneGraph-E):根据输入文本进行三元组抽取;
-
检索(OneGraph-R):根据外部输入文本,通过文本相似度检索最相似的n个实体,并抽取实体的k跳子图,返回检索的子图;
-
生成(OneGraph-G):根据外部输入文本,通过大语言模型生成相关的三元组对已有子图进行补充;
-
思考(OneGraph-T): 根据外部输入文本,结合已经抽取、检索、生成等增强方式得到的子图,生成得到正确输出的思考图,指导最终的输出。
目前,根据发布的OneGraph V1,我们已经实现了OneGraph-R和OneGraph-G两种增强方式。
1.4 实验验证
在实验验证过程中,我们探索了5种OneGraph提供的子图输入LLM的方式:triples、graph summary、node sequence、html code、syntax tree。OneGraph增强方式选择融合了OneGraph-R和OneGraph-G。
我们在评测数据集C-Eval上进行了中文问答测试,评测问题为单选题4选1,包含13948个多项选择题,涵盖52个不同学科,难度从初一、大学、到职业则个考试共4个难度级别。实验中我们选了选择3种大小不同的LLM模型:chatglm2-6b/ qwen2.5-14b/ 200B+ deepseek。+OneGraph表示进行OneGraph增强。实验结果如下:
另外我们还进行了OneGraph增强GraphRAG的实验,实验结果表明OneGraph服务也可以有效增强GraphRAG的效果,更多实验效果请查看OneGraph网站。
实验结果表明,进行了OneGraph增强后,大部分实验结果均有提升。以上2种实验,共24组实验中,20组实验在进行了OneGraph增强后有效果的提升,占到总实验组数的83.33%,这说明OneGraph具有较高的知识覆盖度和准确性。
关于OpenKG SIGData
SIGData是OpenKG成立的首批6个兴趣小组之一,致力于探索大模型时代的知识图谱开放数据建设工作,负责人为浙江大学张文副教授和蚂蚁集团刘志臻研究员。SIGData目前共包括成员39人,来自22家单位,其中28人来自高校,11人来自企业涉及的领域包括人工智能、金融、互联网、制造业、建筑工程、航空航天等。
2025年1月17日,在2024年中文开放知识图谱社区大会上,SIGData组织了首次线下工作会议。会上,SIGData的负责人张文首先介绍了SIGData的年度工作,并介绍了OneGraph的构建、发布及未来展望。随后,三位来自不同领域的SIGData成员进行了来自不同领域的知识图谱构建及应用分享,内蒙古大学副教授安春燕分享了奶业金融知识图谱的构建与应用,南京航空航天大学副教授陆婧探讨了知识图谱在民航旅客画像与消费偏好推理技术中的应用,钉钉刘光宇展示了AI办公助理的知识增强实践。最后,全体成员将继续围绕两个核心议题“大模型构建知识图谱的有效路径”和“OneGraph垂直领域拓展方向”进行进一步的讨论。
总结
过去的2024年,SIGData经历了从成立到逐渐壮大的过程,期间得到了很多伙伴们的支持,感谢大家;从0开始充分利用大模型构建了千万级中英双语概念知识图谱,并进行了数据开放,进行了利用大模型构建LLM需要的知识图谱的初步探索。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。