DeepSeek:医疗行业AI新宠走红的原因及对医院的影响

01.前言

近期DeepSeek爆红,医院和医生都很关心DeepSeek的应用情况,同时也很好奇DeepSeek和已有的大模型有什么差别或者优势,以及DeepSeek的应用发展将对医院和医生带来哪些影响。

所以本文会针对以上这些写点文字,也梳理一下自己对这些方面的思考。

先声明一下,本人也不算专家,只是一位学习者(有点好学),若有写得不当之处,也请大家指正!

02.DeepSeek在医疗行业走红的原因

关于AI,ChatGPT出来其实都挺火的,但医疗行业整体感觉还是属于不温不火的状态,很多医院也在考察和试点,但基本都是想的多说的多,做的少。

为什么会这样,我想主要还是原来落地还比较难,落地效果也不佳!

那为什么DeepSeek一出来就爆火了,所有医院突然都觉得之前想做但做不了的,现在好像可以实现了,究其原因是什么?

我的理解,对比原有的国内外一些知名的通用大模型,DeepSeek有四个核心优势:

一、性能强大,比肩ChatGPT

根据相关评测,目前DeepSeek在性能方面可以比肩OpenAI-o1正式版本,在世界大模型排名Arena上,DeepSeek-R1的基准测试升至全类别大模型第三!

在DeepSeek出来之前,国内各种大模型虽然也在积极探索,不断创新,但在模型能力,创新能力等方面与国际领先水平仍存在一定的差距。

在DeepSeek出来之后,凭借其一系列的技术创新,比如MoE架构,多头潜在注意力机制(MLA)等(有机会下次再探讨),则彻底打破了这一局面,成为了全球大模型领域的有力竞争者,与国外顶尖产品共同站在了行业发展的前沿。

二、免费开源,激发创新活力

一款产品很强,但应用成本很高,推广起来也很难,“免费”与“开源”的特性,让DeepSeek迅速走红!

比如在医院,原来想本地化部署,往往需要额外支付一笔模型购买费用,但现在完全免费使用,只要你有能力安装即可!这对于很多预算有限的医疗机构而言,无疑是一大福音。

再者,就是开源。开源的好处是可以快速吸引大量的开发者和企业加入,构建起庞大的生态系统,从而加速了整个AI技术的普及。

而对于我们的医疗机构而言,开源则赋予了开发者与医院信息团队,根据自身的实际需求进行个性化定制的能力。

比如医生可以与信息中心人员或者相关企业合作,针对医院常见疾病种类、诊疗流程等,对DeepSeek进行优化调整,使其更贴合医院的日常工作流程。

三、低本地化(或私有化)部署难度与成本要求

关于本地化(或私有化)部署的成本,由于DeepSeek的创新机制,一方面对本地化部署安装的硬件要求降低了,同水平模型硬件投入只需原来的几分之一。

另一方面,DeepSeek还提供多个版本的选择,可以根据不同的需求,选择不同的版本,对于应用要求不是很高的场景可以选择轻量级的版本,从而降低本地化(或私有化)部署成本。

关于部署难度,现在网上有许多参考教程,按照教程的步骤,个人也完全可以在自己的PC设备上部署DeepSeek。

因此,DeepSeek极大地降低了本地化(或私有化)部署成本与难度要求。

看到这里,大家就能理解,虽然之前也有开源免费模型,可我们却没有那么关注,因为虽然免费,但又达不到其他几方面要求(除了这里说的本地化问题,还包括前面说的性能和后面说的国产化等问题)。

四、国产化优势,满足政策需求

在当前政策的背景下,“国产化”是一项重要议题,对于医疗机构更是如此!

DeepSeek作为国产AI产品,在这方面具有独特的先天优势。

结合前面讲的开源、本地化部署能力等,能使其更好地符合国内对于医疗机构信息安全、数据隐私保护的要求。

同时,国产化意味着更及时、更贴心的本地化技术支持与服务响应。当医院在使用过程中遇到问题时,国内的技术团队能够迅速介入,根据医院的实际情况提供有效的解决方案,保障医院AI应用的稳定运行。

这对于医疗行业的安全性、稳定性来说,都是至关重要的。

03.DeepSeek给医疗信息化带来的影响

基于以上几个特性,DeepSeek极大地降低AI应用的技术门槛与获取成本,从而促进了AI技术快速普及。

如下图所示:

而这些特性,也必将对医院信息化带来深刻影响。

最直接的影响就以下两方面:

一、本地化(或私有化)部署成为可能

前面说过,在DeepSeek出现之前,医疗行业若要本地化(或私有化)部署大模型,往往面临重重的阻碍。

其中一个就是本地化(或私有化)部署成本与技术难度问题。高昂的硬件成本、复杂的网络架构要求以及对专业运维团队的依赖,使得许多医疗机构望而却步。

而DeepSeek的诞生,由于其多样化的版本选择和对硬件相对较低的要求,让本地化部署成为可能。

大家可不要小看这一点了,鉴于中国医疗信息化一些特殊要求(医院信息系统内外网隔离、数据安全等问题),这一点对AI应用在医院现阶段推广普及非常重要。

二、个性化开发成为可能

医疗行业的需求具有高度的复杂性与多样性,不同医院的专科特色、患者群体、业务流程等都存在差异。

在DeepSeek之前,虽然也有AI应用在推广,但落地效果并不好,其原因还是没能与医院的场景、需求深度融合。说白了,没能真正解决医生和患者关心的问题。

DeepSeek的出现,彻底地改变了这一局面!开源的特性为医疗行业的个性化开发,打开了大门,使得医院能够根据自身的需求,打造专属的AI应用!

上至整个医院,下至科室与医生个人,都可以依托Deepseek快速构建个性化的应用,这在原来是不可想象的。

三、给医院信息化带来的影响

这“两个可能”,必将给整个医院信息化业务带来深刻的变化,其核心就是AI智慧医院成为现实。

最终AI在医院将无处不在,如同“水”和“电”一样,如影随形。

如下图所示:

为什么会这样,因为本地化(或私有化)部署,确保了数据的安全性和高效处理,为AI在医院中的大规模应用奠定了基础。

个性化开发,则让AI技术与医院各个业务场景深度地融合,共同打造多样化的服务场景,让AI“嵌入”看病、就诊、质控、管理等各个方面。

所以当前大家最直观的感受就是越来越多医院接入DeepSeek,短短一个月不到已经有上百家医院宣布接入了DeepSeek,这在原来是不敢想象的。

当然目前可能大家应用都还比较浅,随着时间的发展,最终AI必然与医院业务和流程深度融合,让“基于AI的智慧医院”成为现实。

04.DeepSeek对医院带来的影响

随着DeepSeek在医疗行业的普及,AI与医院业务场景的不断融合,最终也将对医院(包括医生)产生深刻的影响。

本人的判断,AI对医院的影响会远甚于互联网医院百倍(甚至千倍)…

道理很简单,“互联网+”改变的只是对患者的服务方式,但AI能够融入各个方面,包括医生看病、诊疗等各个临床业务。

或许再过十年,之前提的“智慧医院”、“智能医院”或许在某一刻将成为现实。

那时,AI医疗服务将变得无处不在,无论患者身处何地,都能享受到AI带来的更优质、更高效的医疗服务!

总结

DeepSeek凭借其强大的性能、免费开源的特性、较低的本地化(或私有化)部署成本以及国产化优势,在医疗行业迅速走红。

它的出现,改变了医院现有的AI技术应用的局面,降低了应用成本与门槛,为医院构建个性化应用提供了可能,将有力地推动医疗行业的创新发展。

对于医院信息中心与医生而言,DeepSeek不仅仅是一件强大的工具,更是一把开启医疗AI新时代的钥匙。

随着技术地不断进步与应用地深入拓展,相信以DeepSeek为代表的AI应用将在医疗领域发挥更大的作用,为提升医疗服务质量,改善患者就医体验做出不可估量的贡献!

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值