上个周末,百度文库那个自由画布全量上线了。
众所周知,百度的产品,其实我写的都会比较谨慎。但是坦率的讲,在内测了两个月后,我想说,这个画布还是有点东西的。
他可能是我目前用过的最独特的一个创作产品,有点像我当年玩C4D时在那玩各种各样的节点式材质的交互,更像一个AI时代的创作系统。
不过,我觉得,最亮眼的一点,可能是在做PPT上,这玩意,让我做一些非演讲类的PPT的效率直接快了一大截。
而且不止我,群里的群友们都对自由画布的做PPT的功能评价很高。
特别是KA21群的朋友们。。。
而上个周末,他们终于接入内测,全量上线了。
我也终于,可以来个大家聊聊这个玩意了。
网址在此:https://wenku.baidu.com/board
或者你也可以从百度文库首页的这个入口进。
老规矩,先说结论:如果你是个PPT重度被害者,尤其是经常需要从海量资料中提炼精华做演示的牛马,那这个自由画布真的值得一试。
因为他做PPT的逻辑,跟之前所有我用过的AI PPT产品,都不一样。
现在,我也来手把手的给大家看看,用这玩意来做PPT,有多爽。
进入自由画布后,你就能看到这个界面。
这个画面相信很多设计师或者产品经理肯定会很熟悉,就是那种白板工具。
但是很多不太熟悉的用户,第一眼你可能会感觉到有些奇怪,这不像传统的AI工具那样是问答式的对话框,而是一个所谓的画布,可以在上面自由添加、编辑各种素材。
比如说,Gamma的界面就是这样的。相比之下,你就会发现,这玩意只能对话或者传1个文档。
说实话,做PPT的时候,只能传一个文档,能干个啥= =
然后最近不是deepseek太火了吗,有些没法拒绝的朋友和公司,让我过去给大家简单分享一些关于AI,特别是DeepSeek的经验和使用方法,真的就是没法拒绝那种。
但是我真的实在是太忙太忙太忙了。。。每天各种抢热点,还得参加各种局,实在是分身乏术搞PPT。
不过也因为是简单的内部分享,所以大家也没有说让我那么的正式,只要能把大概的信息给大家传达明白就行。
在我心中PPT其实有两种,一种是演讲型PPT,一种是结构型PPT。
演讲型PPT其实作用就是那种大场的非常正式的演讲用的,去串演讲者的思路,比如周六我的《一起AI,交个朋友》活动上,李继刚的PPT。
这玩意你别说AI了,你让任何一个演讲者之外的人去做,估计都不行,这玩意只有演讲者自己才能做的好,跟面壁者一样,没人知道演讲者在这一刻到底在想个啥。
甚至,他会一边演讲一边临时加各种各样的信息。
另一种就是结构型PPT,就是为了当个课件去做一些简单的知识分享的,只要把一个事情结构化、逻辑化的讲清楚就行。甚至都不一定是个PPT,word可能都行,不过PPT这玩意,确实还是最通用的。
在过往,其实PPT模板也已经很成熟了。比如Canva里面,一抓一大把。
解决了美观问题,但是依然解决不了内容问题,除了排版之外,把每一页的内容都填上,有时候更痛苦。
所以这时候,如果我本身就有一堆的素材,让AI根据我的过去的N多素材和我想要的结构,生成一份PPT,那就非常完美了。
所以这个时候,自由画布就派上用场了,救了我好大一条命。
因为它本身的产品形态,就支持无数的素材叠加,来最后输出一个任意模态的东西,可以是文本,可以是PPT,可能是音频,未来,可能还有视频。
而输入的素材形态,也可以是可以是prompt、文字、音频、PDF、PPT、视频,等等等等。
这就像是一个万物流转的中间站,所以,这也是我还是很喜欢自由画布的地方。
特别是,他们最近还接入了DeepSeek,这个可用性,就瞬间起飞了。
对,自由画布可以和DeepSeek R1结合起来用了!
那这个产品形态,就一下子在我心中,能拔高好几个档次了。
各大家看看怎么用。
你可以先把你的一些各种形式的资料扔上去,进行统一管理和编辑。
对每一个不同的部分,你是可以下达不一样的指令的。
比如,我之前做的其他的和DeepSeek没关系的PPT和文章,我就可以直接选中,然后选择【参考语言风格】,只需要文风就足够了。
当你选中了之后,你会发现,右上角多了一个小气泡。
这个气泡就会提示你,这篇PPT就会被当做文风来参考啦。
然后真正需要输出的内容,我们可以选择【参考主要观点】,比如我之前写的DeepSeek提示次技巧的那篇教程贴,我觉得非常的好用,所以经常再给大家分享的时候会聊里面的内容。
不过这里有个比较der的点,就是我的公众号文章必须转成pdf或者是word才能上传上去,他们虽然有网页链接读取,但是公众号的目前只支持总结,不能支持抓取所有原文= =希望他们赶紧更新,这样我效率就能原地起飞了。
当你的文档里,如果有你认为最最最最最重要的段落或者的文字,你还可以直接【批注主要内容】,这样它就只会参考这最重点的一趴了。比如我之前写的DeepSeek的prompt技巧。
就会进入到一个详情页,比如我框选了这个我觉得很有用的一段。
就可以只对这一段进行处理了。
我们可以,对我们上传的所有的内容,都让他们各司其职,做不同的用处。
比如清华大学沈阳老师那边的这个PPT,在逻辑结构上很棒,我们也可以借鉴一下参考逻辑结构。
以前的玩法是一问一答的单线程模式。告诉它一个需求,等它回答,再告诉它下一个需求。累死了。。
而现在只需要圈选不同部分,给出不同指令,就能一起干活。
如果有更特殊的需求,你还可以选中某部分,点击【自由指令】,直接在下面输入你的prompt。
记得这里,一定要开DeepSeek R1,文库既然都全量接了R1,那就得用好。
看着一堆文字哒哒哒的就出来好爽。。
不一会,他就会给你生成一个新的文档,你就可以把这个文档,加入原来的素材大军了。
当你把所有的素材都排兵布阵完以后,就可以准备生成ppt了。
注意,这里记得框选上你所有的素材,这样才是基于你的素材去生成,要不然就会变成AI自由发挥了。。
在下面的那个输入框,我们选择智能PPT,输入我们的主题。
他会先生成一个大纲让你确认一下,没问题你就可以选择模板自动生成了。
然后点生成PPT,你就可以任选一个模板了。
我随便选了个有点科技感的,当然,你们如果有自己的公司或者模板,也可以直接上传。
大概1分钟左右,你的PPT就生成好了,点击预览,你就可以在线修改或者直接下载了。
在线改的话体验也还不错。
坦率的讲,完整度和可用性非常的高,我前面给出的一些素材和重点,几乎都用上了。
但是你肯定不能指望AI一次给你出个完美的,不过基于这个底子,我自己在修修补补,基本改个半小时,就已经可以直接用了。
很酷。
而且其实对于百度,有一个天然的优势就是,他能打通百度网盘。。。
你知道,我的百度网盘里,存了我多少的资料吗。
我敢称他为中文卢浮宫。。。
所以,自由画布解决了我的一个很大的痛点,就是他还能把我百度网盘里这些乱七八糟的内容,全都用上了。
想起了我大学的时候,虽然这话有点不好听,但是。。。
有些课老师真的讲得特别水,有用知识寥寥无几。但考试就考他讲过的内容,你多复习了也没用。
这时候你就可以选择,把平时存在百度网盘里的录音+ppt+板书照片+一些我从百度文库里搜到的其他别的资料,全都扔到自由画布里。
我把我公司还在读书的实习生的资料借过来一用,给大家看看。
比如你可以先用百度文库,把文库里面的一些文档,直接拽过来。
还能把网盘里面的音频或者图片,也直接拽过来。
然后带着这些资料,按照之前的步骤,给予不同的指令。
也就一分钟后,一份只有考点、没有废话的精华版复习资料就新鲜出炉了。
用传统方式,这起码是半天的工作量。
其他场景也可以自动迁移,比如快速准备工作汇报、整理会议纪要、制作项目提案…核心其实就是从一群太水/太繁杂的东西里,精准的找出自己想要的,整理成真正需要的。
而且当百度网盘+文库+自由画布,再加上DeepSeek R1之后。那些曾经的资料,真的都焕发了新生。
相比起来,以前的百度文库和网盘,在我们手里,顶多是个资料库,你只能按既定路径去找资料。
现在,接了DeepSeek之后,我真的要另眼看它了。。
深度推理+无敌的自由。
这真的很酷。
这更像是一个工作台,是一个内容生产系统。
不仅可以多种模态互相流转,甚至可以让N个任务多线并行,一个视频和一篇文章在给我进行灵感激发,另外三篇整合在一起给我一个总结,然后还有一个我自己的视频也在跑内容。
你还可以搜索一些内容,再让他们加入这个队列。
不止是做PPT,你还能让他,来做更多的事,比如写研报、做学习笔记、精准生成文档、生成图片等等等等。
来帮助你,把你的内容的生产效率,变得更高。
这个感觉,太有掌控感了。
自由画布这个概念,不仅在生产内容,也是在管理内容。这是本质上的区别。
它不是要替代你的思考,而是增强你的创造力,让你能够更专注于内容本身,而不是被繁琐的格式和排版问题困扰。
毕竟创意和内容的生产,在很多时候,都是组合的过程。
而这一段组合的逻辑,可以让AI给你提供思路,但是最后的决断,还是得要你自己去做。
未来由AI流水线生产的垃圾一定会越来越多。
人们高喊着自由,其实反而被AI在束缚。
当给你一张自由的白板。
你还能进行创作吗。
如果可以。
那你才是,真正的与众不同。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。