想象一下,如果普通AI是一个只会机械执行指令的机器人,那么采用ReAct策略的智能体就像是一个会先思考后行动的侦探。
在解决问题时,它不会匆忙跳入结论的深渊,而是沿着"观察-思考-行动-观察"的螺旋阶梯,一步步接近真相。这就是ReAct(Reasoning + Acting)策略的魅力所在。
ReAct策略:智能体的"内心独白"与"外在行动"
ReAct就像给AI装上了"内心独白"和"行动执行器"两个齿轮,让它们交替转动:
-
观察环境:智能体睁大眼睛,感知周围世界
-
内心思考:像侦探一样在脑海中分析线索,规划方案
-
采取行动:迈出实际步伐,与环境互动
-
观察结果:检视行动带来的变化,为下一轮思考提供新线索
这种策略让AI不再像无头苍蝇般乱撞,而是像国际象棋大师,每走一步棋都经过深思熟虑。
案例一:寻找名人出生年份
想象智能体面对这个问题:“贝多芬出生于哪一年?”
伪代码示例:
观察:收到问题"贝多芬出生于哪一年?"
思考:这是关于历史人物的问题,我需要查找贝多芬的生平信息。
行动:[搜索] 查询"贝多芬生平"
观察结果:搜索返回"路德维希·范·贝多芬(1770-1827),德国作曲家..."
思考:从结果中我可以看到贝多芬的出生年份是1770年。
行动:[回答] "贝多芬出生于1770年。"
这个过程就像一个学生在做历史作业,先理解问题,思考获取信息的方法,查阅资料,最后从资料中提取答案。
案例二:解决需要多步推理的复杂问题
现在来看一个更复杂的问题:“贝多芬和莫扎特谁的音乐生涯更长?”
伪代码示例:
观察:收到问题"贝多芬和莫扎特谁的音乐生涯更长?"
思考:要比较音乐生涯长度,我需要知道两人的出生年份、逝世年份以及开始创作音乐的时间。
行动:[搜索] 查询"贝多芬生平"
观察结果:得到"路德维希·范·贝多芬(1770-1827),8岁开始学习音乐..."
思考:贝多芬1770年出生,1827年逝世,8岁开始音乐生涯。下面我需要查询莫扎特的信息。
行动:[搜索] 查询"莫扎特生平"
观察结果:得到"沃尔夫冈·阿玛多伊斯·莫扎特(1756-1791),5岁开始作曲..."
思考:莫扎特1756年出生,1791年逝世,5岁开始音乐生涯。现在我需要计算各自的音乐生涯长度。
行动:[计算] 贝多芬音乐生涯 = 1827 - (1770 + 8) = 49年
莫扎特音乐生涯 = 1791 - (1756 + 5) = 30年
思考:经过计算,贝多芬的音乐生涯为49年,莫扎特为30年,所以贝多芬的音乐生涯更长。
行动:[回答] "贝多芬的音乐生涯更长,共49年。而莫扎特的音乐生涯为30年。虽然莫扎特更早开始(5岁),但贝多芬活得更久,因此创作时间更长。"
这个例子就像解谜游戏,需要收集多块拼图,通过逻辑推理将它们拼接起来,才能看到完整图景。
ReAct策略如何提升智能体能力
像导航仪一样校正路线
普通AI像一个按照固定路线前进的火车,而ReAct智能体则像一辆装有GPS的汽车,每行驶一段距离就会重新评估位置,随时调整路线。当遇到错误转弯时,它会立即察觉并纠正,而不会固执地走向错误目的地。
例如,在搜索"拿破仑的出生地"时,如果第一次查询返回不明确结果,ReAct会思考:“我需要更精确的查询”,然后尝试新的搜索词"拿破仑·波拿巴出生地详细信息"。
像拆解积木一样分解问题
面对"计算爱因斯坦发表相对论时的年龄"这样的复杂问题,ReAct会将其分解为:
-
查询爱因斯坦出生年份
-
查询相对论发表年份
-
计算两者之差
这就像厨师先准备所有食材,再一步步完成烹饪,而不是盲目地一股脑儿把所有东西倒入锅中。
生活中的ReAct应用场景
智能购物助手
想象一个帮你选购新笔记本电脑的ReAct智能体:
用户:帮我推荐一台适合图形设计的笔记本电脑。
思考:用户需要适合图形设计的笔记本,应该考虑显卡性能、屏幕色彩还原度和处理器性能。
行动:[检索] 查询"2025年图形设计推荐笔记本"
观察结果:得到多款高性能笔记本信息...
思考:需要了解用户预算和对轻薄度的要求。
行动:[询问] "您的预算大约是多少?对笔记本的轻薄度有要求吗?"
用户:预算8000元,希望便于携带。
思考:根据预算和轻薄需求,需要在性能和便携性间平衡...
...(持续思考-行动循环)
行动:[推荐] "根据您的需求,我推荐以下三款笔记本..."
这个过程就像一位经验丰富的导购,不断通过交流了解需求,思考可行方案,最终提供个性化建议。
健康顾问机器人
一个帮助用户制定健身计划的ReAct智能体:
思考:需要了解用户的身体状况、健身目标和时间安排。
行动:[询问] 收集用户基本信息...
思考:用户是健身新手,希望增肌,每周有3天时间锻炼,需要设计循序渐进的计划。
行动:[检索] 查询"初学者增肌训练计划"
思考:根据用户情况,建议先从基础动作开始,逐步增加强度...
行动:[生成] 制定个性化的三阶段健身计划...
就像一位私人教练,ReAct智能体不仅提供标准化建议,还会根据用户的特点和反馈不断调整计划。
思考:AI的思考之舞
ReAct策略为智能体带来了"思考与行动"的双重能力,如同赋予机器一种特殊的舞蹈节奏。在这场舞蹈中,思考是审慎的步伐,行动是舞者的跃动,两者交织形成优雅而高效的问题解决流程。
通过这种交替前进的方式,AI不再是简单的命令执行者,而成为了能够思考、规划、执行和调整的智能助手。在未来的AI发展中,ReAct策略无疑代表了从"机械反应"到"思考行动"的关键跨越,为构建更智能、更自然的人机交互铺平了道路。
正如侦探需要线索、推理和行动才能破案,配备ReAct策略的智能体也能够在复杂多变的世界中,以更加人性化的方式帮助我们解决各种难题。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。