智慧农业顶层设计与解决方案
该PPT文档围绕智慧农业展开,涵盖建设背景、需求分析、顶层设计、解决方案、案例展示以及保障服务等方面内容,为智慧农业的发展提供了全面的规划思路与实践参考。
- 建设背景与需求
-
政策推动:国家出台多项政策,如 2014 年中央一号文件及农业部相关意见,强调加强农产品质量监管、加大农业科技创新、扶持新型农业经营主体、推进农业信息化,以实现农业现代化。
-
农业信息化任务:包含建设国家农业资源基础数据系统等十大任务,旨在提升农业管理、生产、市场信息服务、疫病防控等多方面的信息化水平。
-
技术应用需求:以设施蔬菜精细化种植管理系统为例,利用传感器采集数据,实现数据展示、报警提示及智能调节,提高农业生产智能化水平。
- 顶层设计思路
-
定义与目标:智慧农业以云计算为核心,融合物联网、移动互联网技术,为农业参与者提供智慧化环境,形成新的管理形态。目标是实现经营网络化、生产智能化、管理高效透明、服务便捷灵活。
-
实现方式:采用 1 大模式(可持续发展模式)、3 大网络(语音、手机、互联网)、6 大类应用(农机通、农技通、农业溯源等),构建省级农业信息化综合服务平台。
-
能力聚合:整合电信、IT、开发、管理能力,包括语音、短彩信等电信服务,系统集成、计算存储等 IT 能力,以及多种业务构件开发和管理功能。
- 解决方案
-
总体架构及平台设计:涵盖数据标准规范、系统安全体系,包含云平台指挥中心、生产、监管、经营等领域,支持多种终端接入,具备数据存储分析、应用开发处理和平台拓展能力。
-
子系统功能介绍:移动农业执法可现场查询农资产品信息;病虫害环境监测用于建立病虫害数据库,实现监测预警;农产品溯源利用二维码技术,让消费者查询农产品信息;农机通方便农机调度和信息服务;移动 OA 实现移动办公;视频会议提供高清便捷的会议体验;应急指挥保障现场调度和协同工作;农业信息平台展示农业信息辅助决策;电子商务平台促进农产品交易。
- 成功案例
-
某省智慧农业案例:实现农户管理、信息发布、销售管理、病虫害管理等功能,数据中心提供个性化服务,优化种植方案,保障农民权益。
-
其它省区案例:各地开展了多种智慧农业项目,如智慧养殖甲鱼实现数量统计、信息查询、防盗报警和环境监控;河南开展农机远程控制管理等项目;还有各地实施的农业大棚监控、农机定位、农村信息化建设、奶源溯源监控、农技推广等项目。
45页PPT部分参考
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。