No.1
80个SCI写作、润色、投稿prompt
二、 SSCI期刊论文写作Prompt (35个)
选题与研究问题 (5个)
-
Prompt:
识别一个紧迫的全球社会问题,该问题超越国界并需要跨学科研究。 从[比较/全球/跨国]视角提出一个解决该问题的研究问题,并强调其与国际学术研究的相关性。
-
Prompt:
分析领先SSCI期刊中[具体社会科学领域]内新兴的理论辩论。 找出对更广泛的社会科学理论具有影响的理论张力或未解决的问题,并提出一个有助于这场辩论的研究方向。
-
Prompt:
批判性地考察以西方为中心的理论对非西方语境(特别是[特定地区/国家])的适用性。 基于来自研究不足地区的经验证据,提出一个挑战或完善这些理论的研究问题。
-
Prompt:
探索[两个或多个社会科学学科]的交叉点,以解决一个复杂的社会现象,该现象无法通过单一学科充分解释。 提出一个研究问题,该问题整合来自多个学科的见解,以提供更全面的理解。
-
Prompt:
根据您对全球研究趋势和资助优先事项的理解,确定一个在智力上具有启发性且在社会上相关的研究主题,并且有可能吸引国际关注和资助。
文献综述与理论框架 (8个)
-
Prompt:
对[研究主题]的SSCI文献进行“系统和批判性”回顾,重点是识别现有研究中的方法论偏差、理论差距和不一致之处。 使用此批判来 обосновать 您自己的研究方法。 (俄语词汇,意为“证明…的合理性”)
-
Prompt:
将来自[非西方/批判/后殖民]学者的理论观点整合到您的文献综述中,以挑战占主导地位的西方范式,并为理解您的研究主题提供替代的理论视角。
-
Prompt:
开发一个“多层次”理论框架,该框架结合了宏观层面的社会结构、中观层面的组织动态和微观层面的个体行为,以全面解释您的研究现象。
-
Prompt:
采用“元分析”或“系统综述”技术来综合分析大量关于[研究主题]的SSCI文献的发现。 找出现有证据基础中的模式、调节因素和差距,并使用这些见解来指导您的研究。
-
Prompt:
追溯[具体社会科学领域]中关键概念或理论框架的“知识历史”,分析其在不同学术传统和历史时期的演变、批判和适应。
-
Prompt:
在您的文献综述中,超越总结现有研究,并与该领域的关键学者进行“理论对话”。 批判性地评估他们的论点,找出同意和不同意的点,并将您自己的研究定位在这种知识对话中。
-
Prompt:
使用“概念图”或“网络分析”以可视方式表示文献综述中关键概念和理论之间的关系。 解释此可视化表示如何阐明您的理论框架并指导您的研究设计。
-
Prompt:
通过批判性地考察主导理论的认识论和本体论基础,挑战您所在领域的“理所当然的假设”。 提出可能导致对社会现象进行更细致和深刻理解的替代假设。
研究设计与方法 (7个)
-
Prompt:
通过明确阐述您的研究方法论的“认识论和本体论假设”,以及其在SSCI背景下回答您的特定研究问题的适用性,来 обосновать 您对研究方法的选择。
-
Prompt:
如果使用定量方法,请采用“高级统计技术”(例如,SEM、多层建模、因果推断方法)来解决复杂的研究问题,并确保方法论的严谨性符合SSCI标准。
-
Prompt:
如果使用定性方法,请采用“严谨的定性数据分析技术”(例如,扎根理论、话语分析、具有跨编码者信度的专题分析),以提高您的发现对SSCI受众的可信度和可信度。
-
Prompt:
如果采用混合方法,请阐明“方法三角剖分的明确理由”,并解释定量和定性数据的整合将如何为SSCI出版物提供对您的研究现象更全面和细致的理解。
-
Prompt:
解决您的研究设计中的“跨文化有效性和普遍适用性”问题,特别是如果您的研究涉及非西方样本或背景。 解释您如何考虑文化差异并确保您的方法在不同文化中的适用性。
-
Prompt:
讨论“伦理考量”,这些考量特定于您的研究背景和人群,特别是当您与弱势群体或在文化敏感的环境中工作时。 详细说明您为保护参与者的权利和福祉而实施的伦理保障措施。
-
Prompt:
如果“创新或非常规的研究方法”(例如,参与式行动研究、数字人种志、基于代理的建模)非常适合您的研究问题,并且可以在您的SSCI领域内提供新的视角,请考虑使用它们。
数据分析与结果呈现 (7个)
-
Prompt:
超越描述性统计,采用“推论统计分析”来检验您的假设并得出统计上合理的结论。 根据SSCI报告指南报告效应量、置信区间和p值。
-
Prompt:
如果您的结果是“无效或不显着”,请不要忽视它们。 相反,探索这些发现的潜在原因,讨论它们的理论意义,并将它们视为对SSCI文献的宝贵贡献。
-
Prompt:
对于定性数据分析,超越主题描述,进行“解释性分析”,以揭示数据中嵌入的更深层次的含义、模式和社会过程。 使用丰富的引语和详尽的描述来说明您的解释。
-
Prompt:
使用“高质量的视觉效果”(例如,可用于出版的图形、表格和图表)呈现您的发现,这些视觉效果清晰、简洁,并有效地向国际SSCI受众传达您的关键结果。
-
Prompt:
将您的发现与现有的SSCI文献进行“比较和对比”,突出一致性和不一致性。 讨论这些比较的理论意义,并解释您的研究如何为现有知识体系做出贡献。
-
Prompt:
通过将您的发现与您的理论框架联系起来,并讨论它们对您所在领域的更广泛的理论意义,来“理论化您的发现”。 解释您的结果如何改进、扩展或挑战SSCI中的现有理论。
-
Prompt:
以平衡和细致的方式承认“您研究的局限性”。 讨论这些局限性可能如何影响您发现的普遍性和解释,但也要强调您的研究在这些局限性内的优势和贡献。
论文写作与投稿 (8个)
-
Prompt:
根据SSCI期刊中常用的“IMRaD格式”(引言、方法、结果和讨论)构建您的手稿。 确保逻辑流程和对您的研究过程和发现的清晰阐述。
-
Prompt:
撰写一个“引人注目且简洁的标题”,该标题准确反映您的手稿的核心内容,并吸引SSCI学者的注意。 使用与SSCI索引和搜索引擎相关的关键词。
-
Prompt:
撰写一份“信息丰富且有影响力的摘要”,总结您的研究问题、方法、主要发现、理论贡献以及对SSCI领域的意义。 遵守目标期刊的摘要长度和格式指南。
-
Prompt:
确保您的手稿以“清晰、简洁且语法正确的英语”书写,SSCI学者国际受众可以理解。 如果需要,请考虑专业的编辑服务。
-
Prompt:
遵守目标SSCI期刊的“特定格式和引文风格”指南(例如,APA、MLA、Chicago)。 密切关注字体、间距、标题和参考文献列表格式等细节。
-
Prompt:
选择“高影响力SSCI期刊”,这些期刊与您的手稿的主题、范围和理论方向非常吻合。 研究期刊排名、影响因子和编辑委员会,以做出明智的期刊选择决策。
-
Prompt:
给期刊编辑写一封“有说服力且专业的求职信”,突出您的手稿的新颖性、意义和理论贡献,并解释为什么它非常适合目标SSCI期刊。
-
Prompt:
在提交之前,从在SSCI出版方面经验丰富的同事或导师那里“寻求反馈”。 根据他们的反馈修改您的手稿,以最大限度地提高其在高影响力SSCI期刊上被接受的机会。
三、 SCI期刊论文写作Prompt (30个)
研究构想与假设形成 (5个)
-
Prompt:
在[具体科学领域]中,识别一个仍然未解答或知之甚少的根本性科学问题。 制定一个“可检验且可证伪”的假设,该假设为这种现象提出一种新颖的机制或解释,并强调其科学新颖性。
-
Prompt:
分析高影响力SCI期刊中[具体科学领域]的近期“突破和范式转变”。 确定现有知识不完整或新技术为进一步研究提供机会的领域。 提出一个研究方向,该方向建立在这些进展的基础上。
-
Prompt:
批判性地评估SCI文献中[研究主题]“当前方法论的局限性”。 制定一个研究假设,旨在通过采用更先进或创新的实验方法来克服这些局限性。
-
Prompt:
探索[一个科学领域]的发现或技术在解决[另一个科学领域]中具有挑战性的问题中的潜在“跨学科应用”。 制定一个研究假设,调查这种跨学科方法的可行性和有效性。
-
Prompt:
根据您的初步实验数据或计算建模结果,确定一个“高影响力研究问题”,该问题有可能推进科学理解并导致[具体科学领域]的重大突破。
方法论与实验设计 (7个)
-
Prompt:
设计一个“稳健且可重复”的实验方案,该方案符合最高的科学严谨性和透明度标准。 详细说明所有实验参数、对照和数据采集程序,以确保可重复性。
-
Prompt:
优化您的实验设计,以“最大程度地提高统计功效并最大程度地减少偏差和误差来源”。 采用诸如随机化、盲法和适当的对照组等技术,以提高您发现的有效性和可靠性。
-
Prompt:
选择“最先进的实验技术和仪器”,这些技术和仪器最适合解决您的研究问题,并在测量中实现高精度和准确性。 基于您选择的方法的灵敏度、特异性和可靠性 обосновать 您的选择。 (俄语词汇,意为“证明…的合理性”)
-
Prompt:
在您的实验设计中加入“阳性和阴性对照”,以验证您的实验系统,并确保您观察到的效果特定于您的实验操作,而不是由于伪像或混杂因素。
-
Prompt:
主动解决您的实验设计中潜在的“混杂变量和局限性”。 实施策略以最大程度地减少它们的影响,并在您的手稿中透明地承认任何不可避免的局限性。
-
Prompt:
如果使用动物模型或人类受试者,请确保严格遵守“动物福利和人类受试者保护的伦理准则和法规要求”。 获得所有必要的伦理批准,并一丝不苟地记录您对合规性的遵守情况。
-
Prompt:
考虑结合“计算建模或模拟”方法来补充您的实验工作,并提供对您的研究发现的机制性见解。 根据实验数据验证您的计算模型,以确保其准确性和预测能力。
数据分析与结果解释 (7个)
-
Prompt:
采用“严谨的统计分析方法”来分析您的实验数据并检验您的假设。 根据SCI报告标准报告统计显着性、效应量、置信区间和p值。
-
Prompt:
使用“高质量的图形和表格”呈现您的实验结果,这些图形和表格在视觉上清晰、信息丰富,并符合SCI期刊的格式指南。 确保图形已准备好发布,并具有适当的分辨率和标签。
-
Prompt:
通过报告误差线、标准偏差或置信区间来“量化实验数据中的不确定性和变异性”。 讨论测量不确定性对解释您的结果的意义。
-
Prompt:
使用多个独立实验或互补的实验方法“验证您的实验发现”。 证明您的结果在不同实验条件和数据集中的稳健性和可重复性。
-
Prompt:
“在现有科学知识的背景下解释您的实验结果”,并讨论它们对推进您所在领域理解的意义。 突出您的发现相对于先前研究的新颖性和意义。
-
Prompt:
“为您的实验发现提出机制性解释”,借鉴已建立的科学原理和理论框架。 讨论可能解释您观察到的效果的潜在生物学、化学或物理机制。
-
Prompt:
“批判性地评估您的实验方法和数据分析的局限性”。 承认潜在的误差、不确定性和偏差来源,并讨论这些局限性可能如何影响您发现的解释和普遍适用性。
论文写作与投稿 (6个)
-
Prompt:
根据SCI期刊中常用的“IMRaD格式”(引言、方法、结果和讨论)构建您的手稿。 确保信息流清晰且逻辑,并简洁明了地呈现您的研究。
-
Prompt:
撰写一份“简洁且信息丰富的摘要”,准确总结您的研究目标、实验方法、主要发现和科学意义。 遵守目标SCI期刊的摘要长度和格式指南。
-
Prompt:
准备“可用于出版的图形和表格”,这些图形和表格在视觉上具有吸引力、易于理解,并有效地传达您的关键实验结果。 确保图形具有高分辨率并正确标记。
-
Prompt:
使用目标期刊指定的引文样式引用“相关且高影响力的SCI期刊文章”。 确保参考文献的准确性和完整性,并使用引文管理软件来维护书目完整性。
-
Prompt:
选择“高影响力SCI期刊”,这些期刊与您的手稿的主题、范围和科学意义非常吻合。 在选择期刊时,请考虑期刊影响因子、出版速度和编辑重点。
-
Prompt:
给期刊编辑写一封“引人注目且简洁的求职信”,突出您的研究发现的新颖性、科学影响和意义,并解释为什么您的手稿非常适合目标SCI期刊。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。